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Abstract

The principal result in this paper is concerned with the derivative of a vector with respect
to a block vector or matrix. This is applied to the asymptotic Fisher information matrix (FIM)
of a stationary vector autoregressive and moving average time series process (VARMA). Repre-
sentations which can be used for computing the components of the FIM are then obtained. In a
related paper [1], the derivative is taken with respect to a vector. This is obtained by vectorizing
the appropriate matrix products whereas in this paper the corresponding matrix products are left
unchanged.

AMS classification: 15A69, 62H12
Keywords: Matrix differential rules, matrix polynomial, Fisher information matrix, VARMA
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1 Introduction
Consider the n-dimensional mixed autoregressive moving average stationary time stochastic process
{y(t), t ∈ N} or VARMA process, of order (p, q) that satisfies,

pX
j=0

Ajy(t− j) =

qX
k=0

Bkε(t− k), t ∈ N (1)

where A0 ≡ B0 ≡ In, the n-dimensional identity matrix, and the white noise process {ε(t), t ∈ N} is
a n-dimensional vector random variable, such that

Eϑ {ε(t)} = 0 Eϑ
©
ε(s)ε>(t)

ª
= δstΣ.

The symbol Eϑ is the expected value under the parameter ϑ, an appropriate representation of ϑ which
consists of the VARMA parameters is given in the next section, > denotes transposition, δst is the
usual Kronecker delta and the covariance matrix Σ is positive definite.
The VARMA proces can also be summarized as follows

A(L)y(t) = B(L)ε(t)
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where the matrix polynomials A(·) and B(·) are given by A(L) =
Xp

j=0
AjL

j , B(L) =
Xq

k=0
BkL

k

and L is the backward-shift operator Lky(t) = y(t−k). We further assume that the eigenvalues of the
matrix polynomials A(L) and B(L) lie outside the unit disc so the elements of A−1(L) and B−1(L)
can be written as power series in L with convergence radius one. These eigenvalues are obtained by
solving the scalar polynomials det A(L) = 0 and det B(L) = 0 of degree pn and qn respectively, det
X is the determinant of X.
In this paper the derivative of a vector with respect to a matrix is considered. In [1] a different
approach is used, the derivative is taken with respect to a vector, this is obtained by vectorizing the
appropriate matrix products. This is implemented by the vec operator which transforms a matrix into
a vector by stacking the columns of the matrix one underneath the other. The approach developed
in this paper leaves the matrix products unchanged. The obtained results are applied to the Fisher
information matrix of a VARMA process and lead to representations which can be used for computing
the corresponding components of the information matrix.

2 The Fisher information matrix
Assume that {y(t), t ∈ N} is a zero mean Gaussian time series. Then its stationary distribution
depends on parameters ϑ = (ϑ1, . . . , ϑc)>, where c is the number of matrix parameters of the vector
autoregressive moving average model. When the entries of ϑ1, . . . , ϑc are considered, the number of
parameters is equal to n2(p+ q). The choice for the n(p+ q)× n parameter vector is

ϑ =



A1
A2
...
Ap

B1
B2
...
Bq


or ϑ =



ϑ1
ϑ2
...
ϑp
ϑp+1
ϑp+2
...

ϑp+q


. (2)

When the representation of the parameter vector ϑ as defined in (2) is considered, the following
equality holds for the n2(p+ q)× n2(p+ q) asymptotic Fisher information matrix

F(ϑ) = Eϑ

(µ
∂ε

∂ϑ

¶>
Σ−1

µ
∂ε

∂ϑ

¶)
(3)

and for simplicity t is omitted from ε(t) in the right-hand side of (3).

3 Main result
In this section the results developed in this paper shall be presented. The derivative of a vector with
respect to a block vector or matrix is first considered and the obtained representation of ∂ε/∂ϑ is
inserted in (3). Consequently, explicit expressions for the entries of F(ϑ) are derived.

3.1 The derivative of a vector with respect to a block vector

In this section we introduce the derivative which is taken with respect to a block vector or a matrix.
The approach set forth in this paper will allow us to give a representation for each element of the
Fisher information matrix. We therefore rewrite the VARMA process as

y(t) = A−1(L)B(L)ε(t) (4)
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and set forth a form for ∂ε/∂ϑ.
Consider a real, differentiable (m×n) matrix function X(ϑ) of a real (c×1) vector ϑ = (ϑ1, . . . , ϑc)>,
where m, n and c are positive integers. Let (m× n) matrices ∂rX = (∂Xij/∂ϑr) with r = 1, . . . , c be
the first order derivatives of X(ϑ) in partial derivative form with Xij being the first (i, j) element of X.
Write dXij =

Pc
r=1(∂Xij/∂ϑr)dϑr, where dϑr is an arbitrary perturbation of ϑr. The (m×n) matrix

dX = (dXij) is the differential form of the first order derivative X(ϑ). An expression in differential
form can instantaneously be put into a partial derivative form by replacing d with ∂r for r = 1, . . . , c.
Let X(ϑ) and Y (ϑ) be real (m × n) and (n × p) differentiable matrix functions of the real vector
ϑ(c × 1), where m,n, p, and c are positive integers. The usual scalar product rule of differentiation
yields

d(XY ) = (dX)Y +X(dY ).

The following properties are taken into account. The first property to be considered is ∂y(t)/∂ϑ = 0,
this holds because the given realization of y(t) is independent of variations in ϑ, and as a second
property the next differential rule is used

dA−1(L) = −A−1(L)dA(L)A−1(L).

This enables us to formulate the following equation for the VARMA process given in (4)

dε = B−1(L)dA(L)A−1(L)B(L)ε−B−1(L)dB(L)ε.

We now set forth the representation

∂ε

∂ϑ
∆ϑ = B−1(L)

©
L∆ϑ1 + L2∆ϑ2 + · · ·+ Lp∆ϑp

ª
A−1(L)B(L)ε−

B−1(L)
©
L∆ϑp+1 + L2∆ϑp+2 + · · ·+ Lq∆ϑp+q

ª
ε,

where ∆ϑi is an arbitrary perturbation.
The next step consists of choosing an appropriate ∆ϑi. To construct the first n2 columns of the matrix
∂ε/∂ϑ, the following approach is applied. We define the n×n matrix Eij with the (i, j) th entry equal
to 1 and 0 elsewhere. The first n columns will be obtained by using the n standard basis vectors e1,
e2,. . .,en in Rn belonging to Ei1, for i = 1, 2, . . . , n. The standard basis block vectors associated with
ϑ1 are then 

E11
0n×n
...

0n×n
0n×n
...

0n×n


,



E21
0n×n
...

0n×n
0n×n
...

0n×n


, . . . ,



En1

0n×n
...

0n×n
0n×n
...

0n×n


.

We see that ∆ϑ1 shall consist of the n× n upper matrices Ei1 with i = 1, 2, . . . , n, whereas
∆ϑ2,∆ϑ3, . . . ,∆ϑp,∆ϑp+1,∆ϑp+2, . . . ,∆ϑp+q are zero. Consequently, the first n columns of ∂ε/∂ϑ
are given by

LB−1(L)E11A−1(L)B(L)ε
LB−1(L)E21A−1(L)B(L)ε
LB−1(L)E31A−1(L)B(L)ε

...

LB−1(L)En1A
−1(L)B(L)ε.
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The next n columns are constructed by considering the first, second up to the n-th standard basis
vector belonging to Ei2, i = 1, 2, . . . , n. The standard basis block vectors associated with ϑ1 are then

E12
0n×n
...

0n×n
0n×n
...

0n×n


,



E22
0n×n
...

0n×n
0n×n
...

0n×n


, . . . ,



En2

0n×n
...

0n×n
0n×n
...

0n×n


.

The corresponding n columns are

LB−1(L)E12A−1(L)B(L)ε
LB−1(L)E22A−1(L)B(L)ε
LB−1(L)E32A−1(L)B(L)ε

...

LB−1(L)En2A
−1(L)B(L)ε.

We proceed in this way to obtain the last n columns associated with ϑ1. The appropriate standard
basis block vectors are given by

E1n
0n×n
...

0n×n
0n×n
...

0n×n


,



E2n
0n×n
...

0n×n
0n×n
...

0n×n


, . . . ,



Enn

0n×n
...

0n×n
0n×n
...

0n×n


.

The corresponding n columns are

LB−1(L)E1nA−1(L)B(L)ε
LB−1(L)E2nA−1(L)B(L)ε
LB−1(L)E3nA−1(L)B(L)ε

...

LB−1(L)EnnA
−1(L)B(L)ε.

Similarily for the next n2 columns associated with ϑ2. In this case the standard basis block vectors
have the following representation 

0n×n
Eij

...
0n×n
0n×n
...

0n×n


,

with i, j = 1, 2, . . . , n. The matrixEij is associated with∆ϑ2 and∆ϑ1,∆ϑ3, . . . ,∆ϑp,∆ϑp+1,∆ϑp+2, . . . ,∆ϑp+q
are zero. The corresponding n2 columns are

L2B−1(L)EijA
−1(L)B(L)ε,
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for each j = 1, 2, . . . , n we have i = 1, 2, . . . , n.A similar approach is applied for the remaining columns
associated with ϑp, the standard basis block vectors are

0n×n
...

0n×n
Eij

0n×n
...

0n×n


→ p-th n× n block

with i, j = 1, 2, . . . , n. The corresponding n2 columns are given by

LpB−1(L)EijA
−1(L)B(L)ε.

The n2q columns associated with ϑp+1, ϑp+2, . . . , ϑp+q, have the representation

−LkB−1(L)Eijε,

where k = 1, 2, . . . , q and for each k we have the same specification for the matrices Eij as for the first
n2p columns.
We shall summarize the results in a proposition. For that purpose we define

φij(L) = B−1(L)EijA
−1(L)B(L) and ψij(L) = −B−1(L)Eij.

The following representations are now introduced

Φ(L) = (φ11(L)ε, φ21(L)ε, . . . , φn1(L)ε, φ12(L)ε, φ22(L)ε, . . . , φn2(L)ε, . . . , φ1n(L)ε, φ2n(L)ε, . . . , φnn(L)ε)

and

Ψ(L) = (ψ11(L)ε, ψ21(L)ε, . . . , ψn1(L)ε, ψ12(L)ε, ψ22(L)ε, . . . , ψn2(L)ε, . . . , ψ1n(L)ε, ψ2n(L)ε, . . . , ψnn(L)ε) .

Proposition 3.1 The following representation holds true

∂ε

∂ϑ
=
¡
LΦ(L), L2Φ(L), . . . , LpΦ(L), LΨ(L), L2Ψ(L), . . . , LqΨ(L)

¢
(5)

= L
©
(1, L, . . . , Lp−1)⊗ Φ(L), (1, L, . . . , Lq−1)⊗Ψ(L)ª

= L
©
u>p (L)⊗ Φ(L), u>q (L)⊗Ψ(L)

ª
where u>x (L) = (1, L, L2, . . . , Lx−1) for positive integers x and A⊗B is the Kronecker product of A
and B.

3.2 Representation of the entries of the Fisher information matrix

Representations which can be used for computing the entries of F(ϑ) shall now be set forth by applying
formula (3) when (5) is considered. We shall proceed with the block representation of F(ϑ) which is
given by

F(ϑ) =
µ Faa(ϑ) Fab(ϑ)
Fba(ϑ) Fbb(ϑ)

¶
. (6)

In a dynamic stationary stochastic context it has long been shown useful to use Fourier transform
representations which provide alternatively circular integral representations. For evaluating F(ϑ) the
following integral representation

F(ϑ) = 1

2πi

I
|z|=1

µ Iaa(z) Iab(z)
Iba(z) Ibb(z)

¶
dz

z
(7)
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is considered, the integration is counterclockwise around the unit circle. Below appropriate representa-
tions of the blocks composing (7) are derived. We shall use an arbitrary element of block Iaa(z) in (7)
to illustate how the representations of the remaining components are obtained. For that purpose a use-
ful equality is introduced. Consider the discrete-time stationary process x(t) where x(t) = H(L)u(t)
and the input process is described by u(t) = G(L)v(t). H(L) and G(L) are asymptotically stable
filters. For evaluating the cross covariance matrix of the output x(t) and the input u(t), the following
equation holds true

Eϑ
©
x(t)u>(t)

ª
=

πZ
−π
Ωxu(ω)dω ω ∈ [−π, π] , (8)

where Ωxu(ω) is the cross spectral density of the processes x(t) and u(t). It is defined as Ωxu(ω) =
H(eiω)Ωu(ω) with Ωu(ω) being the spectral density of the input process u(t) which is given by Ωu(ω) =
G(eiω)Ωv(ω)G

∗(eiω). Y ∗ denotes the complex conjugate transpose of the matrix Y and Ωv(ω) is the
spectral density of the process v(t). When representation (5) is inserted in (3), an arbitrary element
of block Faa(ϑ) then takes the form

Eϑ
n
Tr
³
Lk+1φij(L)εε

>φ>lm(L)Σ
−1Lr+1

´o
, (9)

where Tr(M) is the trace of the square matrix M and k, r = 0, 1, . . . , p− 1 and i, j, l,m = 1, 2, . . . , n.
We have now a similar representation to the left-hand side of (8) where

x(t) = Lk+1φij(L)ε and u(t) = Lr+1Σ−1φlm(L)ε.

The connection between the processes x(t) and u(t) is then given by

x(t) = Lk−rφij(L)φ
−1
lm(L)Σu(t).

Since the white noise process ε has a constant spectral density (independent of the frequency ω) then
it is straightforward to conclude that in view of (8) the value of the spectral density of ε is (1/2π)Σ.
The spectral density of the input process u(t) is then

1

2π

©
Σ−1φlm(e

iω)Σφ∗lm(e
iω)Σ−1

ª
.

Permutation of expectancy Eϑ and trace in (9) and application of (8) leads to

1

2π

πZ
−π
Tr
n
eiω(k−r)φij(e

iω)Σφ∗lm(e
iω)Σ−1

o
dω.

Equivalently for z = eiω we have

(Faa(ϑ))k,ri,j,l,m =
1

2πi

I
|z|=1

zk−rTr
¡
Σφ∗lm(z)Σ

−1φij(z)
¢ dz
z
, (10)

where k, r = 0, 1, . . . , p− 1 and i, j, l,m = 1, 2, . . . , n.
A similar approach is used for the remaining components of the Fisher information matrix F(ϑ).
Representation (7) of F(ϑ) can then be summarized accordingly, to obtain

(Fab(ϑ))k,fi,j,l,m =
1

2πi

I
|z|=1

zk−fTr
¡
Σφ∗ij(z)Σ

−1ψlm(z)
¢ dz
z
, (11)

where k = 0, 1, . . . , p− 1 and f = 0, 1, . . . , q − 1 and i, j, l,m = 1, 2, . . . , n.

(Fba(ϑ))f,ki,j,l,m =
1

2πi

I
|z|=1

zf−kTr
¡
Σψ∗ij(z)Σ

−1φlm(z)
¢ dz
z
, (12)
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where f = 0, 1, . . . , q − 1 and k = 0, 1, . . . , p− 1 and i, j, l,m = 1, 2, . . . , n.

(Fbb(ϑ))h,fi,j,l,m =
1

2πi

I
|z|=1

zh−fTr
¡
Σψ∗ij(z)Σ

−1ψlm(z)
¢ dz
z
, (13)

where f, h = 0, 1, . . . , q − 1 and i, j, l,m = 1, 2, . . . , n.
We shall now present Whittle’s formula for the VARMA process (1). It is given by the following
equality, see [2]

Fjk(ϑ) = 1

4π

πZ
−π
Tr
µ
∂Ω(ω)

∂ϑj
Ω−1(ω)

∂Ω(ω)

∂ϑk
Ω−1(ω)

¶
dω, (14)

where the spectral density of the VARMA process (1) is

Ω(ω) =

µ
1

2π

¶
A−1(eiω)B(eiω)ΣB>(e−iω)A−>(e−iω).

In [1] the equivalence between (3) and the matrix-level version of (14) is shown. Consequently, the
entries of the matrix-level version of (14) are explicitely given by (10), (11), (12) and (13).
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