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†Correspondence to: Cem Çakmaklı, Valckenierstraat 65-67, 1018 XE Amsterdam, The Nether-
lands, e–mail: C.Cakmakli@uva.nl.

‡P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands, e–mail: paap@ese.eur.nl.
§P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands, e–mail: djvandijk@ese.eur.nl.



1 Introduction

Synchronization of cyclical behavior of economic and financial time series variables

has generated considerable interest in recent years. Typical examples include the

synchronization of bull and bear phases in financial markets (see Edwards et al.,

2003; Bekaert et al., 2005, among others) and the synchronization of business cycles

in different countries or regions (see Bordo and Helbling, 2003; Artis et al., 2004;

Canova et al., 2007; Kose et al., 2003, 2008, among others). Much attention in this

research area has been focused on the extreme cases of independence and perfect

synchronization of cycles. In the first case, the cycles in two variables are purely id-

iosyncratic, while in the second case the two variables are driven by a single common

cycle such that regime shifts occur contemporaneously. A wide range of econometric

techniques has been developed to examine these polar cases, ranging from (non-

)parametric testing procedures (see Artis et al., 1997; Harding and Pagan, 2006;

Pesaran and Timmermann, 2009), to unobserved components models (see Koopman

and Harvey, 1997), to Markov-Switching Vector AutoRegressive (MS-VAR) models

(see Krolzig, 1997; Artis et al., 2004).

Perhaps not surprisingly, it is often found that neither independence nor perfect

synchronization are adequate representations of the cyclical dynamics in economic

and financial variables. A variety of mechanisms may lead to the intermediate case

of ‘imperfect synchronization’. For example, it may be that cycles in individual

variables are partly due to common components and partly due to idiosyncratic

factors. This seems relevant when considering, for example, bull and bear markets

for country specific asset returns, (see Kole et al., 2006, for example) or business

cycles in different countries or regions, (see Kose et al., 2003, 2008; Del Negro and

Otrok, 2008, for example). A second possibility is that the different variables in

fact share a single common cyclical component, but subject to different phase shifts.

This approach is appropriate in the context of comovement in asset returns in the
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sense that in financial markets, shifts from bull to bear phases and vice versa may

occur earlier in some assets than in others due to differences in liquidity or gradual

information diffusion, among other reasons. Similarly, leading indicator variables of

the economy are expected to enter to different business cycle phases earlier than co-

incident indicator variables. Imperfect synchronization due to different phase shifts

of a single common cycle has been incorporated by Koopman and Azevedo (2008)

in unobserved components models, and by Hamilton and Perez-Quiros (1996) and

Paap et al. (2009) in MS-VAR models.

In this paper, we extend the framework of MS-VAR models for describing im-

perfect synchronization due to different phase shifts of a single common cycle. We

generalize the models of Hamilton and Perez-Quiros (1996) and Paap et al. (2009) in

two important directions. First, we allow for multiple regimes and consider the possi-

bility of different phase shifts for the different regimes. Second, we allow for regime

dependent-heteroscedasticity and correlations, in addition to regime switching in

the means. In this way we obtain a general framework where we can simultaneously

estimate the degree of synchronization together with the unobserved regimes.

Allowing for multiple regimes is relevant in the context of financial markets as

well as of business cycle analysis. For example, when modeling stock returns us-

ing Markov-switching models, existing evidence suggests that three or four regimes

are required to characterize the dynamics adequately. Next to regimes representing

bull and bear markets, additional regimes may be necessary to capture ‘crashes’

and ‘recoveries’ (Guidolin and Timmermann, 2006), or ‘bull market corrections’ and

‘bear market rallies’ (Maheu et al., 2000). Similarly, Boldin (1996) and Clements

and Krolzig (2003), among others, show that a three regime model provides a more

accurate and robust characterization of the US business cycle. While the specifica-

tion in Hamilton and Perez-Quiros (1996) can be applied to MS-VAR models with

multiple regimes, their formulation allows only for ‘symmetric’ phase shifts, that is,
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the regime switches in one variable lead/lag transitions of the other variable by a

fixed number of periods. This may be too restrictive given the empirical evidence

that, for example, leading indicator variables have a longer lead time at business

cycle peaks than at troughs, (see Board, 2001; Paap et al., 2009, for example). Paap

et al. (2009) in fact provide an MS-VAR specification that allows the phase shifts to

be different depending on the type of transition. However, the formulation they use

can only be applied to the MS-VAR model with two regimes.

Allowing for regime-specific volatilities may be of crucial importance for reliable

and accurate identification of the regimes, especially in the context of asset returns.

The main identifying characteristic of bull and bear markets is their different lev-

els of volatilities (together with the sign of the returns), see, among others, Maheu

and McCurdy (2000); Guidolin and Timmermann (2006). This gives rise to addi-

tional complications in case of imperfectly synchronized cycles, however, as there

is no unique way to define a proper covariance matrix. We demonstrate that this

complication may be overcome by using the decomposition of the covariance matrix

in volatilities and correlations. It is fairly straightforward to guarantee that the

resulting covariance matrix is positive definite, for example, while still allowing for

a fair amount of flexibility in specifying the regime dynamics of the volatilities and

correlations.

We adopt a Bayesian approach for estimation and inference, based upon the

aim to estimate the degree of synchronization by estimating the phase shifts in the

cycle of one variable relative to the cycle of another variable. As these phase shifts

are represented by means of discrete valued parameters in the model, frequentist

estimation procedures are not feasible.

We illustrate the potential of our framework for modeling imperfect synchro-

nization using an empirical application for size-based US stock portfolios. There

is considerable evidence that returns on (portfolios of) large stocks lead returns on
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(portfolios of) small stocks, see Lo and MacKinlay (1990); McQueen et al. (1996);

Richardson and Peterson (1999); Hou (2007), among others. Using monthly US

large-cap and small-cap portfolio returns over the period 1963-2007, we find that a

three-regime model with regime-dependent heteroscedasticity captures the dynamics

of the portfolio returns most adequately. Allowing for different volatilities and cor-

relations is of crucial importance for identification of the regimes. The regimes can

be characterized as ‘boom’ (high average returns with moderate volatility and low

correlation), ‘moderate’ (mean returns close to zero, low volatility and high correla-

tions), and ‘bear/crash’ (negative mean return, high volatility and high correlation).

We find heterogeneity in the phase shifts across different regimes, in the sense that

the large-cap portfolio leads the small-cap portfolio for switches to the moderate

regime by a single month, while the two portfolios switch contemporaneously into

the boom and crash regimes. This suggests that during turmoil periods, with either

good or bad news, information diffusion occurs rapidly and lead-lag effects are not

present. News ‘travels slowly’ during more moderate times, in the sense that it is

incorporated only gradually into small stocks, such that their prices adjust with a

delay compared to large stocks.

Several alternatives to MS-VAR models for analyzing synchronization of cycles

are available. One possibility is to use non-parametric ‘dating algorithms’ for identi-

fying ‘turning points’ or regime switches. Once these turning points are determined,

independence and perfect synchronization may be tested in a straightforward manner

(see Artis et al., 1997; Harding and Pagan, 2006). However, this approach typically

is limited to only two regimes (corresponding with bull and bear markets in finan-

cial markets or recession and expansion periods in business cycle analysis). Another

alternative is provided by multivariate unobserved components models, where trend

and (common or idiosyncratic) cycle components of the series are modeled sepa-

rately, as in the similar cycle model of Koopman and Harvey (1997). Our motiva-
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tion for adopting MS-VAR models is that the conventional turning points approach

is intrinsically embedded in these models without defining content-specific decision

rules. This obviously provides a general framework for analyzing synchronization,

reconciling traditional dating algorithms with modern parametric econometric tools.

The remainder of the paper is organized as follows. In Section 2 we describe the

general Markov-switching VAR model with different phase shifts for multiple regimes

and with regime-dependent heteroskedasticity. We discuss the Bayesian estimation

methodology with prior and likelihood specifications in Section 3, with full details

being provided in the Appendix. In Section 4 we consider the empirical application

to size-based portfolios. Finally, we conclude in Section 5.

2 Model specification

In this section we put forward the MS-VAR model with imperfect synchronization

due to phase shifts of a single common cycle. The key feature of the model is that

the amount of phase shift can be different across regimes. Furthermore, it allows

the cycle to consist of any number of regimes J ≥ 2. To simplify the exposition,

here we describe the model for the bivariate case, but it can be extended to include

multiple variables in a straightforward manner.

Let y1,t and y2,t denote the observations of the variables of interest in period

t. We assume that the J regimes are characterized by different means of y1,t and

y2,t. We also allow their variances and contemporaneous correlation to be regime

dependent, as described in detail below, but we assume that autoregressive coeffi-

cients are constant across regimes. In case of first order autoregressive dynamics,

our assumptions imply the model specification

y1,t − µ1,S1,t = ϕ1,1(y1,t−1 − µ1,S1,t−1) + ϕ1,2(y2,t−1 − µ2,S2,t−1) + ε1,t,

y2,t − µ2,S2,t = ϕ2,1(y1,t−1 − µ1,S1,t−1) + ϕ2,2(y2,t−1 − µ2,S2,t−1) + ε2,t,
(1)
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where Sl,t, l = 1, 2 are latent multinomial variables taking the value j if yl,t is in

regime j at time t, µl,Sl,t
= E[yl,t|Sl,t] denotes the mean of yl,t in the regime indicated

by Sl,t, and ε1,t

ε2,t

 ∼ NID (0,Σt) . (2)

For now, we do not specify the dynamics of the covariance matrix Σt, but we return

to this issue in detail below.

The model is completed by specifying the dynamic properties of the unobserved

regime indicators S1,t and S2,t. We assume that S1,t and S2,t are first-order J-state

homogenous Markov processes with transition probabilities

Pr(Sl,t = j|Sl,t−1 = i) = pij,l, for i, j = 1, . . . , J and l = 1, 2.

Without loss of generality, we assume that y1,t is the ‘reference series’ and we define

the properties of S2,t, the regime indicator of y2,t, relative to S1,t. Different specifica-

tions of the relation between the two Markov processes S1,t and S2,t imply different

types of relations between the cycles of the two variables. Two extreme cases can

be distinguished. First, we may assume that S1,t and S2,t are independent, that is,

each variable has its own idiosyncratic cycle. Second, we can assume that S1,t and

S2,t are identical, that is,

S2,t = S1,t, (3)

or, put differently, there is a single cycle governing both variables. Following Harding

and Pagan (2006), we refer to the latter case as ‘perfect synchronization’ (PS). Note

that the specification with independent Markov processes S1,t and S2,t does not imply

that the cycles in the two variables do not exhibit any synchronization at all. In

fact, letting pl,j denote the unconditional probability that Sl,t = j for l = 1, 2 and
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j = 1, . . . , J , the two cycles are in the same regime with probability

Pr(S2,t = S1,t) =
J∑

j=1

p1,jp2,j > 0.

In practice, the degree of synchronization between cycles in different financial

and macroeconomic variables may not be perfect but still higher than the expected

level under independence as given above, see the empirical evidence in Harding and

Pagan (2006) and Candelon et al. (2008, 2009), among others. Hence, neither perfect

synchronization nor independence may be adequate representations of the relation

between cycles. A natural and elegant approach to accommodate this possibility is

to assume that the cycle in y1,t leads/lags the cycle in y2,t by κ periods, as suggested

by Hamilton and Perez-Quiros (1996). In other words, there is a common cycle but

it affects the different variables with a certain phase shift. We refer to this case

as imperfect synchronization with ‘symmetric’ phase shifts (SPS), where symmetry

refers to the fact that all possible regime transitions in the two variables differ by

the same number of time periods, κ. This specification can be formulated as

S2,t−κ = S1,t. (4)

Obviously, if κ equals to zero, it reduces to the perfect synchronization case in (3).

The specification in (4) may still be too restrictive, in the sense that the phase

shift of the cycle may not be the same for all possible regime transitions. For

example, leading indicator variables typically have a considerably longer lead time

at business cycle peaks than at troughs, see Board (2001). For this purpose, Paap

et al. (2009) consider a two-regime model with possibly different phase shifts κ12

and κ21 for these two types of turning points.

In case of multiple regimes J > 2, several extensions of the specification in (4) are

possible to allow for the possibility of ‘asymmetric’ phase shifts. First, following Paap
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et al. (2009) we can assume a specific lead/lag structure for every possible transition

from regime i to regime j. While this specification obviously provides a great deal

of flexibility, it is not without problems as the number of phase shift parameters

increases rapidly as the number of regimes J becomes larger. For a model with J

regimes, it would result in J(J−1) phase shift parameters κij, i, j = 1, . . . , J ; i ̸= j.

In addition, the κij parameters are identified only by specific transitions from regime

i to regime j. Hence, in order to obtain accurate estimates of these parameters we

need a fair number of all possible regime switches to occur.

If the regimes are ordered in a logical way (for example according to the mag-

nitude of the mean of the reference series y1,t), another possible extension of (4)

could be to assume identical phase shifts for all possible upward and downward

regime changes. Independent of the number of regimes J , this would require esti-

mating only two phase shifts parameters, one for transitions to regimes with a higher

mean and one for transitions to regimes with a lower mean. However, as all regime

changes to the same direction are assumed to be subject to identical phase shifts,

the asymmetry in the lead/lag times of the cycles is highly restricted.

Here we propose an alternative solution, which aims to strike a balance between

flexibility and parsimony. Specifically, instead of specifying the phase shifts for each

possible type of regime switch, we assume that the regime indicator S1,t itself is

shifted but allowing the amount of phase shift to be different across regimes. That

is, we generalize (4) to the case of imperfect synchronization with ‘asymmetric’ phase

shifts (APS) as

S2,t−κS1,t
= S1,t, (5)

where the subscript S1,t to κ indicates that the regime indicator is shifted by a

possibly different number of time periods for each regime. Hence, this specification

involves a separate regime shift parameter κj for each regime j = 1, . . . , J . To put

things differently, we assume that the lead/lag time is different per regime, such that
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each regime in the second series starts later or earlier by κj periods. The advantage

of this specification is that it provides a parsimonious solution (as the number of

phase shift parameters grows only linearly with the number of regimes), while at the

same time it is quite flexible and allows for considerable heterogeneity in the amount

of phase shifts of the common cycle.

The specification in (5) is not sufficient though, as it may lead to situations where

for some time periods S2,t is assigned multiple values or is not defined at all. To

clarify the problem more explicitly, without loss of generality, consider a model with

only two regimes and suppose the reference series y1,t is in regime 1 in period τ − 1

and switches to regime 2 in period τ . Using the formulation in (5) for determining

the regime of the second series implies a phase shift of κ1 periods at time τ − 1 and

κ2 periods at time τ , that is

S2,τ−1−κ1 = S1,τ−1,

S2,τ−κ2 = S1,τ .

If κ1 > κ2, the shift at τ − 1 is greater than the shift at τ . Hence, by applying

this dating procedure we do not assign any of the regimes to the second variable

for periods [τ − κ1, τ − κ2 − 1]. In the opposite case, we assign both regimes 1 and

2 simultaneously for periods [τ − κ2, τ − 1 − κ1]. This example demonstrates that

we need a further decision rule to resolve these possible conflicts in determining the

relevant regime for y2,t. We suggest to use the decision rule that the regime with the

larger amount of phase shift is assigned to such conflicting periods. Hence, in the

example above, this rule implies assigning regime 1 to the second variable in case

κ1 > κ2 for time periods that are left undetermined by (5), that is, setting S2,t = 1

for t ∈ [τ − κ1, τ − κ2 − 1]. Similarly, we set S2,t = 2 for t ∈ [τ − κ2, τ − 1 − κ1] in

the opposite case when κ1 > κ2.

The main advantage of the proposed decision rule to assign the regime with the
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larger amount of phase shift to conflicting periods is that it implies that the phase

shift is equal to κj when entering regime j. Possible alternatives would not achieve

this. For example, assigning the regime with the smaller amount of phase shift to

conflicting periods would lead to a specification where the the phase shift is equal

to κj when leaving regime j.

In sum, the specification in (5) together with the censoring rule to assign the

regime with the larger κj parameter in case of conflicted time periods constitutes

a general framework for imperfect synchronization with multiple regimes, which

encompasses perfect synchronization and imperfect synchronization with symmetric

phase shifts.

Finally, we return to the specification of the structure of the covariance matrix

to finalize the general model framework. As discussed before, in many applications

assuming homoskedasticity for the error terms may not be appropriate assumption.

In fact, regime-dependent variances and co-variances may be crucial for accurate

identification of the regimes. To facilitate the specification of a regime-dependent

covariance matrix we decompose it into the variances and correlations, that is

Σt = DtRtDt, (6)

where Dt = diag(σ1,t, σ2,t) is a diagonal matrix with standard deviations of the error

terms as diagonal elements and Rt is a matrix with ones on the diagonal and the

correlation ρt as the off diagonal element, (see, for example, Barnard et al., 2000).

In case of perfect synchronization, it is straightforward to specify a regime-

dependent covariance matrix. The value of the variances and correlation just depend

on the value of S1,t. Imperfect synchronization (either with symmetric or asymmet-

ric phase shifts) allows for the possibility that the different series are in different

regimes in a given period. Consequently, there are several ways of relating the vari-

ances and correlations to the regimes. The easiest solution is to maintain the same

10



assumption as in the perfect synchronization case, namely that the variance and

correlation regimes are completely determined by the regime indicator of the first

series. This results in

σl,t = σl,S1,t for l = 1, 2,

ρt = ρS1,t ,
(7)

where we also allow for regime switching in the correlation parameter (see, for ex-

ample, Pelletier, 2006).

Specification (7) implies perfect synchronization in the variance regimes of both

series. In case phase shifts lead to imperfect synchronization in the means µl, l = 1, 2,

this assumption may not be realistic. Instead, it seems more natural to relate the

variances of two series to their individual regime indicator S1,t and S2,t. This leads

to the following specification

σl,t = σl,Sl,t
for l = 1, 2,

ρt = ρS1,t ,
(8)

where we use the regime indicator of the first series S1,t to describe the regime of

the correlation parameter.

3 Estimation

We use a Bayesian approach for estimation and inference in the MS-VAR model

with imperfect synchronization due to asymmetric phase shifts using Markov Chain

Monte Carlo (MCMC) techniques. Specifically, we use Gibbs sampling together

with data augmentation (see Geman and Geman, 1984; Tanner and Wong, 1987)

to obtain posterior results. The main reason for adopting a Bayesian approach

is that we treat the lead/lag times κj, j = 1, . . . , J , as unknown parameters to

be estimated. Given that the κj’s are discrete, a frequentist approach (such as

maximum likelihood combined with the EM algorithm) is infeasible. In Section 3.1

11



we derive the likelihood function of the model, while we discuss the specifications of

the prior distributions in Section 3.2. In Section 3.3 we outline the Gibbs sampling

algorithm for simulating from the posterior distribution. Finally, in Section 3.4

we discuss how to select a preferred specification from several competing models

with possibly different numbers of regimes, different types of synchronization, and

different specifications of the covariance matrix.

3.1 Likelihood function

We follow the common practice in the literature to treat the unobserved regimes in

Markov-Switching models as parameters to be estimated. For this purpose we derive

the complete data likelihood function. We do so for the bivariate MS-VAR model

as given in (1) with (2), with imperfect synchronization due to asymmetric phase

shifts as specified in (5) and covariance matrix as in (6)–(8). In vector notation we

can write the model as

Yt −MSt = Φ(Yt−1 −MSt−1) + Et, with Et ∼ N(0,Σt), (9)

where

Yt =

y1,t

y2,t

 , St =

S1,t

S2,t

 , Et =

ε1,t

ε2,t

 ,

and

MSt =

µ1,S1,t

µ2,S2,t

 , and Φ =

ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

 .

Given the assumption of multivariate normality for the shocks Et, the conditional

density of Yt given the past observations Y t−1 = {Y1, . . . , Yt−1} and given the past
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and current states St = {S1, . . . , St} is given by

f(Yt|Y t−1, St, µ1, µ2, σ
2
1, σ

2
2, ρ,Φ, κ) =

(
1√
2π

)2

|Σt|−
1
2 exp

(
−1

2
E ′
tΣ

−1
t Et

)
, (10)

where µl = (µl,1, . . . , µl,J)
′ and σ2

l = (σ2
l,1, . . . , σ

2
l,J)

′ for l = 1, 2, ρ = (ρ1, . . . , ρJ)
′ and

κ = (κ1, . . . , κJ)
′. The complete data likelihood function for model (9) conditional

on the first observation equals

f(Y T , ST |Y1, θ) =

(
J∏

i=1

J∏
j=1

(
p
Tij

ij

)) T∏
t=2

f(Yt|Y t−1, St, µ1, µ2, σ
2
1, σ

2
2, ρ,Φ, κ), (11)

where T denotes the sample size, Tij is the number of transitions from regime i to

regime j, and θ = (µ1, µ2, σ
2
1, σ

2
2, ρ, vec(Φ), κ, vec(P )) represents all the model param-

eters, with P = {pij}Ji,j=1 the matrix with transition probabilities. The likelihood

function conditional only on the model parameters can be obtained by summing (11)

over all the possible states as

f(Y T |Y1, θ) =
J∑

S1,1=1

J∑
S1,2=1

· · ·
J∑

S1,T=1

f(Y T , ST |Y1, θ). (12)

3.2 Prior distributions

To estimate the models parameters together with the unobserved regimes, we would

like to obtain posterior results that are driven by the data rather than by the prior

distributions. Therefore, we impose rather diffuse prior specifications for the model

parameters.

The parameters of key interest are the lead/lag times or phase shifts κj, j =

1, . . . , J . For those, we use a discrete uniform prior where we assign equal probability
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to each possible value of κ in a predefined set C, that is

f(κ) ∝


1 for all κ ∈ C,

0 otherwise.

(13)

The specification of the set C determines the type of synchronization that is assumed.

For example, when C = {κ ∈ ZJ | − cj ≤ κj ≤ cj, j = 1, . . . , J} for certain positive

valued cj, j = 1, . . . , J , we allow for imperfect synchronization with the phase shifts

being restricted only by the bounds cj. Additional restrictions may be imposed such

that, for example, the difference between the phase shifts of the distinct regimes

cannot exceed a certain threshold d. In this case, C can be specified as C = {κ ∈

ZJ | − cj ≤ κj ≤ cj, |κi − κj| ≤ d, i, j = 1, . . . , J}. Note that setting d equal to zero

(while cj > 0 for j = 1, . . . , J) results in a model where phase shift parameters are

identical across regimes, that is, corresponding with the specification of Hamilton

and Perez-Quiros (1996) given in (4). Setting cj = 0 we obtain an MS-VAR model

with perfect synchronization as in (3).

For the transition probabilities we use a uniform distribution on the unit interval

(0,1), that is

f(pij) = I[0 < pij < 1] for i, j = 1, . . . , J . (14)

When this non-informative prior for the transition probabilities is used special at-

tention must be paid to the prior specifications of the regime-dependent parameters.

This follows from the fact that the value of the complete data likelihood function

is the same if we switch all regime dependent parameters together with the corre-

sponding transition probabilities. This ‘label switching problem’ complicates proper

posterior analysis as the posterior distributions of the regime dependent parameters

become multimodal, see Frühwirth-Schnatter (2001) and Geweke (2007) for discus-

sion. To circumvent this problem, we define the prior for the regime dependent mean
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parameters µ = (µ′
1, µ

′
2)

′ in such a way that it identifies the regimes. Specifically, we

set the prior specification for µ as

f(µ) ∝


1 if µ1 ∈ {µ1 ∈ RJ |µ1,1 < . . . < µ1,j < . . . < µ1,J}

0 elsewhere.

(15)

For the autoregressive coefficients we use flat priors

f(Φ) ∝ 1, (16)

when the characteristic roots of Φ lie outside the unit circle and 0 otherwise.

Finally, for the regime-dependent variance parameters as well as for the correla-

tion parameters we take uninformative priors

f(σ2
l,j) ∝

1

σ2
l,j

for l = 1, 2 and j = 1, . . . , J, (17)

f(ρj) ∝ (1− ρ2j)
− 3

2 , j = 1, . . . , J. (18)

These priors can be derived by decomposing a covariance matrix with inverted

Wishart distribution where the degrees of freedom approaches to zero into the con-

ditional distributions of variances and correlations.

3.3 Posterior simulation

The posterior distribution for the model parameters is proportional to the product

of the likelihood function (12) and the joint prior f(θ), with the latter obtained as

the product of (14)–(18). Gibbs sampling together with data augmentation leads to

the following algorithm to draw from the joint posterior distribution:

1. Sample µ from f(µ|Φ, σ2, ρ, ST )
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2. Sample Φ from f(Φ|µ, σ2, ρ, ST )

3. Sample σ2
l from f(σ2

l |µ,Φ, ρ, ST ) for l = 1, 2.

4. Sample ρj from f(ρj|µ,Φ, σ2
i,j, S

T ) for j = 1, . . . , J

5. Sample pij from f(pij|ST
1 ), for i, j = 1, . . . , J .

6. Sample κj from f(κj|µ,Φ, σ2, ρ, ST
1 ) for j = 1, . . . , J .

7. Sample ST
1 from f(ST

1 |µ,Φ, σ2, ρ, κ)

Details on the derivation of the conditional posterior distributions resulting from the

likelihood function and prior distributions are given in Appendix A.

3.4 Model selection

The multistate MS-VAR model with imperfect synchronization with asymmetric

phase shifts provides a flexible and intuitive framework for characterizing partial syn-

chronization of cycles in different macroeconomic and financial variables. However,

moving away from more restricted but more parsimonious forms of synchronization

may also result in overfitting. Therefore, we want to establish the potential of the

model by comparing it with more restricted (nested) alternative models, in particular

MS-VAR models with symmetric phase shifts and with perfect synchronization.

Selecting the best model is not an easy task when the competing alternatives em-

body regime switching dynamics. In most cases standard testing procedures apply

only when the number of regimes is the same in the models being compared. In this

case marginal likelihood based comparisons, e.g. Bayes factors, can be implemented.

When the task is determination of the number of the regimes, however, a complica-

tion arises when improper priors are used for the regime dependent parameters of

interest. In this case, Bayes factors are not properly defined and tend to select the

more parsimonious model (see Gelfand and Dey, 1994, for details). An alternative
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way of model comparison is by means of predictive Bayes factors computed using

predictive likelihoods. This approach has the advantage that it is not affected by

the choice of prior distributions and overfitting, while it is directly related to the

posterior model probabilities. For a given model, the predictive likelihood of the

observation at t0 + 1, Yt0+1, conditional on the previous observations Y t0 , is given

by

f(Yt0+1|Y t0) =

∫
f(Yt0+1|θ)f(θ|Y t0)dθ, (19)

where p(θ|Y t0) is the posterior distribution of the model parameters θ given the

observations until t0, and p(Yt0+1|θ) is the density of the observation yt0+1, which

can be written as

f(Yt0+1|θ) =
J∑

j=1

f(Yt0+1|S1,t0+1 = j, θ)f(S1,t0+1 = j|θ, Y t0). (20)

We can use the posterior simulator to obtain the distribution of the model parameters

and estimate the predictive likelihood by G−1
∑G

g=1 f(Yt0+1|Y t0 , θ(g)) where G is a

large number of draws from the posterior distribution. This can be extended to

compute the predictive likelihood of a sequence Y t0+1,t0+h = (Y ′
t0+1, . . . , Y

′
t0+h)

′ where

f(Y t0+1,t0+h|Y t0) =

∫ h∏
l=1

f(Yt0+l)|Y T0+l−1, θ)f(θ|Y t0)dθ, (21)

see Frühwirth-Schnatter (2006), for details.

4 Lead-lag effects in size-based portfolio returns

In this section, we use the MS-VAR models to analyze the degree of synchronization

in monthly returns of stock portfolios with different levels of market capitalization.

Empirical evidence convincingly has demonstrated that asset returns are not nor-

mally distributed. Markov-switching models provide an interesting approach for
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describing this non-normality, by means of a mixture of underlying normal distribu-

tions, see Timmermann (2000) and Perez-Quiros and Timmermann (2001), among

others. A further attractive property of Markov-switching models is that they for-

malize the idea of cyclical variation in financial markets, with phases corresponding

with periods of bull and bear sentiment, for example, during which asset prices have

quite different characteristics. Not surprisingly then, Markov-switching models have

become increasingly popular in modeling and forecasting asset prices. Previous re-

search focuses mostly on univariate modeling of asset returns. This generally leads

to the finding that a model with two or three regimes captures the univariate dy-

namics in aggregate stock returns and identifies bull and bear markets successfully

(see Turner et al., 1989; Chauvet and Potter, 2000; Maheu and McCurdy, 2000;

Guidolin and Timmermann, 2006, among others). Relatively fewer papers focus on

multivariate settings analyzing the dependence between different asset returns (see

Perez-Quiros and Timmermann, 2000; Ang and Bekaert, 2002; Guidolin and Tim-

mermann, 2006, for example). More regimes typically seem to be required for an

adequate representation of the joint return distribution. For example, using excess

returns of size-based stock portfolios and bonds, Guidolin and Timmermann (2006)

show that a four regime model representing bear, bull, recovery and crashes performs

better than competing models with fewer regimes.

Previous applications of multivariate regime-switching models to asset returns as-

sume perfect synchronization in the cyclical dynamics of the included assets. While

it does not seem unreasonable to represent the idea of regimes in financial markets by

means of a single common cycle, the assumption that regime switches occur contem-

poraneously for different assets may not be appropriate. In particular, a substantial

body of empirical research has documented the presence of lead-lag effects between

different types of stocks. Determinants of the lead-lag effect include size, analyst

coverage, institutional ownership and trading volume, see Lo and MacKinlay (1990);
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Brennan et al. (1993); Badrinath et al. (1995); Chordia and Swaminathan (2000),

among others. Focusing on size, the typical finding is that returns on (portfolios

of) large stocks lead returns on (portfolios of) small stocks, see Lo and MacKinlay

(1990); McQueen et al. (1996); Richardson and Peterson (1999); Hou (2007), among

others. Several explanations have been put forward for this size-based lead-lag ef-

fect, including time-varying expected returns and market microstructure biases such

as infrequent trading, see Boudoukh et al. (1994). Most empirical evidence, how-

ever, points in the direction of the tendency of small-caps to adjust more slowly

to new (common) information than large caps as the underlying reason. Previous

studies typically examine the lead-lag effect in size-based portfolios using cross-

autocorrelations within a vector autoregressive framework. Interestingly, McQueen

et al. (1996) and Hou (2007) document a ‘directional asymmetry’ in the lead-lag

effect. Specifically, McQueen et al. (1996) find that large caps lead small caps only

in response to good news, but not bad news. Hou (2007) reports the opposite effect,

namely that small stocks adjust slowly to negative news but not to positive news.

Here we examine whether the lead-lag effect between small caps and large caps can

also be established when Markov-switching models are used for describing their joint

distribution. In particular, we adopt our framework where the regime dynamics are

governed by a single common cycle that is subject to phase shifts, which possibly

are different across regimes.

We use our MS-VAR modeling framework to examine the presence of lead-lag

effects in size-based portfolios based on all NYSE, AMEX, and NASDAQ stocks

over the period July 1963 - December 2007. We consider monthly returns on equal-

weighted large-cap and small-cap portfolios, consisting of the 20% largest and small-

est stocks (sorted according to market capitalization), respectively.1 We use the

1The data is obtained from Kenneth French’s website data library
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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returns in excess of the risk-free rate.2

We estimate MS-VAR models with two, three and four regimes. For the relation

between the regime dynamics in the two portfolio returns series, we consider the

four possibilities discussed in Section 2, namely (i) independent cycles (IND); (ii)

perfect synchronization (PS); (iii) imperfect synchronization with a single phase shift

of the common cycle (SPS); and (iv) imperfect synchronization with regime-specific

phase shifts (APS). For the specification of the covariance matrix, we examine the

two characterizations discussed in the Section 2. On the one hand, we impose

perfect synchronization in the variance dynamics, as in (7). Here we assume that

the regime dynamics of the covariance matrix are governed by the Markov process

that also drives the regime dynamics of the expected excess returns on the large-cap

portfolio. Note that the large-cap portfolio resembles the market index much more

closely than the small-cap portfolio and, therefore, is a more adequate measure to

capture the dynamics of volatility and correlation in the stock market. This model

is denoted as Σ-PS, as we assume perfect synchronization of the portfolios in terms

of their covariance dynamics. On the other hand, we assume that the expected

excess return and the variance of each portfolio have identical regime dynamics, as

in (8). In this case, the regime switches of the correlation are still determined by

the regime indicator of the large-cap portfolio.3 This covariance matrix specification

is indicated by Σ-APS, as it allows for imperfect synchronization with asymmetric

phase shifts (APS) in the volatility dynamics of the portfolios.

For the models with imperfect synchronization, we specify the set of admissible

phase shift parameters C such that all κj’s, j = 1, . . . , J , are in the interval [−2, 2],

2For the risk-free rate we use Fama-Bliss risk free rates from CRSP (Center for Research in
Security Prices). This series is discontinued in December 2001. For the remaining part of the
sample period we use the 4-week T-Bill rate measured at close on last trading day of each month
from the St. Louis Federal Reserve(http://research.stlouisfed.org/fred2/).

3We also estimate models with the correlation regime being determined by the regime of the
small-cap portfolio’s expected return and volatility. Overall these models perform worse in terms
of marginal likelihood and predictive likelihood. Detailed results are available upon request.
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i.e. cj = 2, as it is unlikely that the delay exceeds two months in financial assets. We

also restrict the differences between the phase shift parameters for different regimes

to be one month at most, i.e. d = 1.

Finally, we do not include autoregressive dynamics in any of the models. This

may seem restrictive, especially in light of Boudoukh et al. (1994) who argue that

lead-lag effects among size-based portfolios may be spurious as they are in fact,

to a large extent, due to contemporaneous correlation and own-autocorrelation of

small-cap stocks. This suggests a large stock portfolio does not necessarily lead a

small stock portfolio once lagged small-cap portfolio returns are included to account

for these autocorrelation effects. With this in mind, we also estimate all models

with the first lag of the small-cap returns (as well as with unrestricted first-order

autoregressive dynamics) included. The results, especially those related to lead-lag

parameters, are very similar to those reported here. Here we do not display these

results for the sake of brevity.4 In order to achieve a robust model selection we

compute both the marginal likelihood using the whole sample period as well as the

predictive likelihood. For evaluating the predictive likelihood we use the sample from

July 1963 until December 2000 for estimation of the model and the remaining period

from January 2001 until December 2007 to compute the predictive likelihood. For

the complete out-of-sample period the predictive likelihood is computed using the

posterior distribution based on the initial estimation sample, as recursive updating

is not feasible in terms of computation time. The posterior distributions are based

on 50 000 iterations of the Gibbs sampling algorithm. The first 20 000 draws are

discarded as burn-in sample and the final 30 000 draws are used for inference and

for predictive likelihood computation. The convergence of the MCMC sampler is

checked using statistical and visual inspection and in all the models convergence is

assured.

4Detailed results are available upon request.
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Table 1 displays the log marginal likelihood and log predictive likelihood values

of the competing models. Table 1 offers five clear-cut conclusions. First, indepen-

dent of the number of regimes and the specification of the covariance matrix, the

models with a (possibly shifted) common cycle convincingly outperform the model

with independent cycles in terms of marginal likelihood. The differences become

larger when the number of regimes increases or when perfect synchronization of the

covariance dynamics is imposed. The model with independent cycles also performs

worse in terms of predictive likelihood, with the exception of the two regime model

with imperfect synchronization in the volatilities.

Second, independent of the number of regimes and the specification of the re-

lation between the cycles in the two portfolio returns, the models with imperfect

synchronization (Σ-APS) achieve higher marginal likelihood and predictive likeli-

hood values than the corresponding models with perfect synchronization (Σ-PS).

The only exception is the two-regime model with symmetric phase shifts (and the

two-regime model with asymmetric regime shifts, but only in terms of predictive like-

lihood). Hence, the assumption of perfect synchronization in the variance dynamics

does not seem appropriate.

Third, independent of the number of regimes, for the Σ-APS models we find that

the marginal likelihood and predictive likelihood values for the specifications with

perfect synchronization and with imperfect synchronization due to symmetric phase

shifts are (almost) identical. This occurs because the phase shift parameters in the

SPS models are estimated to be equal to zero, which reduces this specification to

the PS model.

Fourth, independent of the number of regimes, for the Σ-APS models we find

that the marginal likelihood and predictive likelihood values for the specifications

with imperfect synchronization due to asymmetric phase shifts are (substantially)

higher than those for the PS and SPS specifications. This suggests that allowing for
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Table 1: Comparison of the models estimated using LC and SC
Data

Log marg. likelihood Log pred. likelihood

Σ-PS Σ-APS Σ-PS Σ-APS

Panel A: 2 regimes

IND -3356.3 -3306.5 -465.1 -461.7
PS -3220.7 -3218.8 -465.0 -464.8
SPS -3206.5 -3218.8 -462.8 -464.8
APS -3211.3 -3210.4 -461.2 -463.9

Panel B: 3 regimes

IND -3508.4 -3443.6 -464.7 -470.5
PS -3283.2 -3257.1 -465.9 -463.2
SPS -3213.5 -3257.1 -464.9 -463.2
APS -3225.9 -3206.1 -463.7 -459.6

Panel C: 4 regimes

IND -3984.6 -3770.8 -469.8 -475.2
PS -3322.4 -3276.0 -463.1 -463.3
SPS -3322.4 -3276.0 -463.1 -462.6
APS -3326.9 -3230.5 -463.5 -461.6

Note: The table presents log marginal likelihoods and log predictive like-
lihoods of the competing models with (i) different number of regimes;
(ii) different types of synchronization in expected returns, and (iii) dif-
ferent types of regime switching of the variances and correlations. The
models are applied to monthly excess returns on large-cap and small-
cap portfolios for the sample period July 1963-December 2001. Marginal
likelihoods are those obtained when the models are estimated for the
complete sample period. Predictive likelihood values are for the period
January 2001-December 2007, which are computed conditional on the
posterior distributions of the model parameters obtained with an esti-
mation sample ending in December 2000. The regime dynamics in the
expected excess returns correspond with (i) independent cycles (IND);
(ii) perfect synchronization (PS); (iii) imperfect synchronization with a
single phase shift of the common cycle (SPS); and (iv) imperfect syn-
chronization with regime-specific phase shifts (APS). The specifications
of the covariance matrix dynamics correspond with (i) perfect synchro-
nization (Σ-PS), according to the regime indicator for the expected ex-
cess returns of the large-cap portfolio; and (ii) imperfect synchronization
with regime-specific phase shifts (Σ-APS), where the correlation switches
regimes according to the regime indicator for the expected excess returns
of the large-cap portfolio. Posterior results for computing log marginal
(predictive) likelihoods are based on 50 000 (30 000) simulations of which
the first 20 000 are discarded for burn-in.
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regime-specific lead-lag times is appropriate for the large-cap and small-cap portfo-

lios. While the differences in likelihood values are relatively small for the two-regime

models, they become substantial when multiple regimes are considered.

Fifth, focusing on the APS specification with Σ-APS, the model with three

regimes offers the best performance in terms of predictive likelihood.5

In sum, the results in Table 1 lead us to select the model with three regimes and

imperfect synchronization with asymmetric phase shifts in both the expected excess

returns and the volatilities as the preferred specification. In the remainder of this

section, we therefore focus on the estimation results for this model specification.

Table 2 summarizes the posterior results of the model parameters. These indicate

that the three regimes in the model have distinct features. A general pattern is that

in each regime the volatility of the small-cap portfolio is much higher than the

corresponding volatility of the large-cap portfolio, as expected. However, this higher

volatility of the small-cap portfolio comes with a higher mean return (indicating a

risk-return trade-off) only for the first regime. Regime 1 is characterized by a large

positive mean return for both portfolios together with low volatility (especially for

large caps), capturing a ‘boom’ market. For both large-cap and small-cap portfolios

regime 2 has mean return close to zero and relatively low volatility. An interesting

result is that the volatility in the boom market is lower than the moderate regime

for the large-cap portfolios. Regime 3 can be characterized as a ’bear’ market,

as it shows a substantially negative mean return accompanied by high volatility,

indicating the large uncertainty during these time periods. Summarizing, the first

and third regime capture the ‘turbulent’ times with abrupt fluctuations in stock

5Note that the model with three regimes not only achieves higher marginal likelihood and
predictive likelihood values than the model with two regimes, but also than the model with four
regimes. For the PS and SPS specifications this is even more pronounced, with the marginal
likelihood value declining monotonically as the number of regimes increases. While this may seem
surprising at first, it can be understood by recalling that marginal likelihood (or Bayes factors) tends
to select the more parsimonious model when improper priors are used for the regime dependent
parameters, as discussed in Section 3.4.
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Table 2: Posterior results for three-regime MS-VAR model with asymmetric syn-
chronization and regime-dependent heteroskedasticity

Regime 1 Regime 2 Regime 3

Large caps Mean µ1,j 3.772 (0.626) 0.114 (0.224) -1.337 (0.964)
Volatility σ1,j 2.901 (0.395) 3.353 (0.181) 7.804 (0.795)

Small caps Mean µ2,j 6.310 (0.767) -0.519 (0.368) -2.077 (1.480)
Volatility σ2,j 4.159 (0.650) 3.909 (0.241) 11.192 (1.228)

Correlation ρj 0.305 (0.198) 0.724 (0.032) 0.709 (0.065)

Transition probabilities pij
Regime 1 0.516 (0.010) 0.440 (0.098) 0.043 (0.041)
Regime 2 0.064 (0.024) 0.875 (0.028) 0.061 (0.020)
Regime 3 0.215 (0.081) 0.066 (0.057) 0.718 (0.091)

Phase shifts κj

0.000 (0.000) -1.000 (0.000) -0.049 (0.217)

Note: The table presents posterior means and standard deviations (in parentheses) of param-
eters in the MS-VAR model with three regimes, imperfect synchronization with asymmetric
phase shifts, and regime-dependent heteroskedasticity, estimated for monthly excess returns
of large cap and small-cap portfolios over the period July 1963 - December 2007. The volatil-
ities σl,j have the same regime dynamics as the corresponding expected excess returns µl,j

, l = 1, 2. The correlation ρj has the same regime dynamics as the mean and volatility of
the large-cap portfolio. Posterior results are based on 50 000 simulations of which the first
20 000 are discarded for burn-in.
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market and the second regime captures ‘normal’ times with either small gains or

losses together with limited volatility.

The transition probability estimates also reveal an interesting pattern in the

relative duration of the different regimes and the cyclical dynamics in the portfolio

returns. The probability of staying in the boom regime is 0.52 and hence the duration

of this regime is short, on average only two months. As the transition probability

of 0.88 indicates, the average duration of the moderate regime 2 is longer than the

other regimes with almost eight months. The probability of staying in the bear

regime is 0.73 implying an average duration of about four months. Transition from

the boom regime is ten times more likely to occur to the moderate regime than to the

bear regime, with transition probability of 0.44 and 0.043, respectively. Hence, the

boom regime typically does not end with a crash, but is followed by a period with

moderate returns. By contrast, when the bear regime is left, this is much more likely

to happen to the boom market regime than to the moderate regime, with transition

probabilities of 0.215 and 0.066, respectively. This suggests that bear markets are

most often followed by a (short) period with high returns, providing evidence of a

‘recovery’ or ‘bounce-back effect’ in these stock returns, similar to findings for the

US business cycle in, for example, Kim et al. (2005).

We display the posterior regime probabilities in Figure 1. We also include re-

cessions as dated by the NBER in shaded areas to elaborate the links between the

regime timings with the business cycle.

First, from the graphs we can infer that the regimes are estimated quite precisely

in the sense that generally the regime probabilities are close to zero or one, although

there is some uncertainty about the regime assignment in a few periods. The conclu-

sion drawn above about the regimes capturing turbulent and normal times is evident

in Figure 1. The boom regime, for example, mostly occurs at the end of recessions

(among others). In addition, except for the recession in 1981-2, the moderate regime
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Figure 1: Posterior probabilities of regimes of LC and SC
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appears considerably less frequently during recessions than during expansions. The

bear market regime mostly occurs before and during the start of the recession. In

addition, this regime captures all stock market crashes that occurred during the

sample period, such as ‘Black Monday’ (October 1987), the Russia crises (August-

September 1998), the collapse of the dot-com bubble (2000-1), and 9/11 (September

2001).

As an alternative way of assessing the regime dynamics, Figure 2 shows the

implied model volatilities, obtained as the weighted average of the regime-specific

volatilities with the posterior regime probabilities as weights, together with the

monthly realized volatility constructed from the daily portfolio returns.6 It is seen

that the patterns in realized volatility are captured fairly well by the model, in the

sense that periods with a higher level of realized volatility generally are matched by

increased ‘model-implied’ volatility.

Finally, we turn to the estimates of the phase shift parameters to assess the

implications of the model concerning the lead-lag effects of the large-cap and small-

cap portfolios. The posterior results of the phase shift parameters κj are shown in

the bottom panel of Table 2 and in Figure 3.

The estimates provide convincing evidence for the presence of asymmetric phase

shifts. Specifically, we find large and small stocks enter into the boom and bear

regimes contemporaneously. For the boom regime we find that all posterior proba-

bility mass is located at κ1 = 0. For regime 3, there is only a modest probability

that κ3 = 1. In contrast, for the moderate regime the large-cap portfolio leads the

small-cap portfolio by one month. The posterior uncertainty for this parameter is

very small.7

6Specifically, the monthly realized variance is computed as the sum of squared daily returns
plus twice the sum of the cross-product of returns on consecutive trading days. The latter provides
a correction for the presence of autocorrelation in the daily returns, see Zhou (1996).

7Clearly, the posterior standard deviations of the κ parameters are very small. Note that we
impose strong priors to deal with the uncertainty embodied in the data but still this prior assigns
equal probability to all types of synchronization. Hence, the result is not affected by this reasonably
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Figure 2: Comparison of volatilities implied by the model and realized volatilities
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Figure 3: Distribution of lead/lag times for LC and SC regimes
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We interpret our findings concerning the phase shift parameters as follows. The

contemporaneous switches of the two portfolios to the boom and bear regimes suggest

that during turmoil periods, with either good or bad news, information diffusion

occurs rapidly and lead-lag effects are not present. The positive phase shift for the

second regime indicates that news ‘travels slowly’ during more moderate times, in

the sense that it is incorporated only gradually into small stocks, such that their

prices adjust with a delay compared to large stocks. We note that our findings of

asymmetric phase shifts are quite different to the conclusions reached by McQueen

et al. (1996) and Hou (2007) concerning the asymmetric nature of lead-lag effects.

McQueen et al. (1996) find that large caps lead small caps only in response to good

news, but not bad news. Hou (2007) documents the opposite effect, namely that

small stocks adjust slowly to negative news but not to positive news. Incorporating

lead-lag effects in a regime-switching framework with multiple regimes, we obtain

intuitively plausible results that possibly reconcile the findings of McQueen et al.

(1996) and Hou (2007). Our posterior results suggest that information diffusion

in fact occurs rapidly for both good and bad news items that have considerable

impact on stock prices, in the sense that large-caps and small-caps switch to the

extreme boom and bear regimes at the same time. Small-caps respond with a delay

during moderate times, possibly due to the fact that less ‘exciting’ news during those

periods is incorporated in their prices less rapidly.

5 Conclusion

In this paper we have developed a Markov-Switching vector autoregressive model

that allows for imperfect synchronization of cyclical regimes in multiple variables,

due to phase shifts of a single common cycle. The model has three key features. First,

strong prior, though the amount of variation may be affected by its strength. Nevertheless, the
results with weaker priors are very similar to the results shown here. Detailed results are available
upon request.
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the amount of phase shift different across regimes (as well as across variables). This

feature is empirically relevant given the evidence for asymmetries in lead-lag effects

in different types of assets, as well as in leading and coincident economic indicators.

Second, the cycle can consist of any number of regimes J ≥ 2. Allowing for multiple

regimes can be necessary for accurate modeling of cyclical dynamics in financial asset

returns, as well as business cycle dynamics in macroeconomic variables. Third, the

model allows for regime-dependent volatilities and correlations. This is particularly

important for identification of regimes in asset prices, where differences in volatilities

(and correlations) often are more pronounced than differences in mean returns.

In an empirical application to monthly returns on size-based stock portfolios, we

found that a three-regime model with asymmetric phase shifts and regime-dependent

heteroscedasticity characterizes the joint distribution of returns most adequately.

While large- and small-cap portfolios switch contemporaneously into boom and crash

regimes, the large-cap portfolio leads the small-cap portfolio for switches to a mod-

erate regime by a month. This suggests that during turmoil periods, with either

good or bad news, information diffusion occurs rapidly and lead-lag effects are not

present. News ‘travels slowly’ during more moderate times, in the sense that it is

incorporated only gradually into small stocks, such that their prices adjust with a

delay compared to large stocks.
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Appendix A Conditional Posterior Distributions

In this appendix, we derive the posterior distributions that we use in the sampling

scheme described in Section 3.3. For notational convenience, let S1,t and S2,t be the

J×1 vectors of indicator functions for the first and second variable, respectively. The

elements in these vectors take the values 0 or 1, indicating which of the J regimes

occurs at time t.

We write the model (4) in matrix notation

Yt − S ′
tµ = Φ(Yt−1 − S ′

t−1µ) + Et, with Et ∼ N(0,Σt), (A.1)

where Yt and Et are defined below (9) and

St =

 S1,t 0J

0J S2,t

 , (A.2)

with 0J a J × 1 vector of zeros.

A.1 Sampling of µ

To sample µ we first rewrite (A.1) as

Σ
− 1

2
t (Yt − ΦYt−1) = Σ

− 1
2

t (S ′
t − ΦS ′

t−1)µ+ Σ
− 1

2
t Et. (A.3)

This is a regression in the form of

Zt = Xtµ+ ϵt with ϵt ∼ N(0, I2), (A.4)

and hence the conditional distribution of µ is multivariate normal with mean (X ′X)−1

X ′Z and variance (X ′X)−1, where X = (X ′
2, . . . , X

′
T )

′ and Z = (Z ′
2, . . . , Z

′
T )

′, see
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Zellner (1971). The restrictions on the elements of µ that are imposed for identifi-

cation of the regimes, as discussed in Section 3.2, can be applied by sampling from

the corresponding truncated distribution or by using acceptance rejection sampling.

A.2 Sampling of Φ

Conditional on the remaining model parameters, the model in (A.1) is a multivariate

regression of the form

Z = ΦX + U, (A.5)

where Z = (Z2, . . . , ZT ) with Zt = Yt − S ′
tµ, and X = (X2, . . . , XT ) with Xt =(

Yt−1 − S ′
t−1µ

)
. Using the fact that vec(ΦX) = (X ′ ⊗ I2)vec(Φ), we can write this

as a univariate regression

z = (X ′ ⊗ I2)vec(Φ) + u, (A.6)

where z = vec(Z) and u = vec(U). It then follows that the conditional posterior

distribution of vec(Φ) is multivariate normal with mean ((X ′ ⊗ I2)
′Ω−1(X ′ ⊗ I2))

−1

((X ′ ⊗ I2)
′Ω−1z) and covariance matrix ((X ′ ⊗ I2)

′Ω−1(X ′ ⊗ I2))
−1
, where

Ω−1 = Cov(u)−1 = diag(Σ−1
2 , . . . ,Σ−1

T ).

A.3 Sampling of Variances and Correlations

To sample the variances we decompose the multivariate normal distribution of Et

into the conditional distribution of ε2,t given ε1,t and the marginal distribution of

ε1,t. This results in

T∏
t=2

f(Et) =
T∏
t=2

1

σ1,t

ϕ

(
ε1,t
σ1,t

)
1

σ2,t

√
(1− ρ2t )

ϕ

(
ε2,t − ρtε1,t
σ2,t(1− ρ2t )

)
, (A.7)
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where σ2
l,t denotes the variance of εl,t, l = 1, 2, which follows from (7) or (8). Hence,

using standard results from a linear regression model with a diffuse prior for the

variance, it follows that the conditional posterior distribution of σ2
l,j, with l = 1, 2 and

j = 1, . . . , J , is an inverted χ2 distribution with scale parameter
∑T

t=2 I[Sl,t = j]ε2l,t

and with
∑T

t=2 I[Sl,t = j] degrees of freedom.

To sample ρj from its conditional posterior distribution we can again use (A.7).

It is easy to see that only the time periods for which S1,t = j are relevant

(1− ρ2j)
− 3

2

T∏
t=2

(
1√

(1− ρ2t )
ϕ

(
ε2,t − ρtε1,t
σ2,t(1− ρ2t )

))I[S1,t=j]

. (A.8)

We can easily implement the griddy Gibbs sampler approach of Ritter and Tanner

(1992). Given that ρj ∈ (−1, 1) for all j = 1, . . . , J , we can setup a grid in this

interval based on the precision we desire about the value of ρj.

A.4 Sampling of P

From the conditional likelihood function (12), it follows that the transition proba-

bilities from state i can be written as

f(pi,1, . . . , pi,J) ∝
J∏

j=1

p
Ti,j

i,j for i = 1, . . . , J, (A.9)

where Tij denotes the number of transitions from state i to state j. This corresponds

to the kernel of a Dirichlet distribution and hence the transition probabilities can be

sampled from a Dirichlet distribution with parameters Tij for j = 1, . . . , J − 1. The

transition probability to state J , piJ , follows from the restriction that
∑J

j=1 pij = 1.
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A.5 Sampling of Lead/Lag Parameters κ

As the κj parameters can only take discrete values we can compute the posterior

probabilities for all κ ∈ C and sample from a multinomial distribution. We can

sample all κj parameters at once or conditional on each other, one at a time. When

the number of admissible κ’s is large, the latter approach may be more attractive as

the number of combinations increases only linearly in the number of states, whereas

it increases exponentially in the first case.

A.6 Sampling of Regimes

The conditional posterior density of S1,t denoted by f(S1,t|S−t
1 , θ, Y T ) for t = 1, . . . , T

and S−t
1 = ST

1 \{S1,t}, is proportional to the transition probabilities due to the

Markov structure and to the density of Y conditional on the regimes. Hence, we can

write the posterior density of S1,t

f(S1,t|S−t
1 , θ, Y T ) ∝ f(S1,t|S1,t−1, θ)f(S1,t+1|S1,t, θ)

t+1+κmax∏
i=t−κmin

f(Yi|Y i−1, Si, θ),

(A.10)

where f(Yt|Y t−1, St, θ) is given in (10), κmax = max(κ1, . . . , κJ) and κmin = min(κ1, . . . , κJ).

At time t = T the term f(S1,t+1|S1,t, θ) drops out. The regime at t = 1 can be sam-

pled from the conditional distribution

f(S1,1|S−1
1 , θ, Y T ) ∝ f(S1|θ)f(S1,2|S1,1, θ)

t+1+κmax∏
i=2

f(Yi|Y i−1, Si, θ), (A.11)

where the unconditional density f(S1,1|θ) follows a multinomial distribution with

ergodic probabilities of the Markov chain.

Sampling of the state variables can be implemented by starting from the most

recent value of ST
1 and sampling the states backward in time, one after another.

After each step, the tth element of ST
1 is replaced by its most recent draw.
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