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Abstract

This paper documents that factors extracted from a large set of macroeco-
nomic variables bear useful information for predicting monthly US excess stock
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would be willing to pay an annual performance fee of several hundreds of ba-
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†Correspondence to: Cem Çakmaklı, Valckenierstraat 65-67, 1018 XE Amsterdam, The Nether-
lands, e–mail: C.Cakmakli@uva.nl.

‡P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands, e–mail: djvandijk@ese.eur.nl.



1 Introduction

Stock return predictability remains an issue of intense debate. On the one hand,

a substantial number of papers reports positive forecasting results, with the most

successful predictor variables being valuation ratios such as the dividend yield, the

price-earnings ratio, and the book-to-market ratio, or other financial variables such

as the short-term interest rate, the yield spread, or the credit spread, see Keim

and Stambaugh (1986); Campbell and Shiller (1988); Fama and French (1988); Fer-

son and Harvey (1991); Ang and Bekaert (2007); Campbell and Thompson (2008);

Wachter and Warusawitharana (2009), among many others. On the other hand,

studies such as Welch and Goyal (2008) contest this view, arguing that over long

time spans, no single predictor variable can outperform the historical mean return

in terms of forecast accuracy, both in-sample and out-of-sample.

Interestingly, although stock returns are assumed to be linked to business condi-

tions, macroeconomic variables such as output growth and inflation do not seem to

add any predictive power for stock returns beyond the above-mentioned valuation

ratios and interest rate related variables. The few exceptions to this rule include

the consumption-wealth ratio (Lettau and Ludvigson, 2001), the expenditure share

on housing Piazzesi et al. (2007), expenditure on durables as a fraction of its stock

(Gomes et al., 2009), and survey-based measures of expected business conditions

(Campbell and Diebold, 2009).

Several complicating issues plague research on the predictive content of macroe-

conomic information for stock returns. First and foremost, numerous macroeconomic

variables are available, but typically only a small number of variables is considered

as possible predictors in a return regression. Presumably, the information embed-

ded in the selected variables is more limited than the information that is actually

available to an investor, who might consider a much larger set of macro variables.

Obviously, there are sound statistical reasons for limiting the number of (macro)
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variables in a predictive regression model. Expanding the set of predictors would

exacerbate the issue of parameter estimation uncertainty, which translates into addi-

tional uncertainty in the resulting return forecasts. At the same time, with the num-

ber of predictors being restricted it becomes crucial to select the most informative

variables for consideration. This essentially leads to the issue of model uncertainty,

as it is not clear a priori which macroeconomic variables bear the most relevant

information for stock returns.

Second, the relations between excess stock returns and individual predictors ap-

pear to be highly unstable, see Bossaerts and Hillion (1999); Pesaran and Timmer-

mann (2002); Paye and Timmermann (2006); Rapach and Wohar (2006); Lettau

and Van Nieuwerburgh (2008); Ravazzolo et al. (2008); Pettenuzzo and Timmer-

mann (forthcoming), among others. Hence, if a given macroeconomic variable is

found to be useful for forecasting stock returns over a certain period, this might

very well break down at some point. Put differently, the predictive ability of indi-

vidual variables strongly fluctuates over time. Note that this aggravates the model

uncertainty problem in the sense that the set of variables to include in a predictive

regression model is unstable.

In this paper, we apply dynamic factor models to jointly handle the issues

of model uncertainty, parameter estimation uncertainty, and structural instability.

Specifically, we use principal component analysis to construct a small number of

factors from a large set of macro variables. These factors are then included in a

predictive regression model for excess stock returns. The motivation for considering

this approach is derived from macroeconomic forecasting, where various successful

applications of factor models have appeared in recent years for prediction variables

such as output growth and inflation, see Stock and Watson (2002b); Forni et al.

(2003); Mönch (2008), among others. The same approach has been adopted by Lud-

vigson and Ng (2007) for examining the relationship between expected stock returns
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and volatility and by Ludvigson and Ng (2009) for analyzing the effects of macroe-

conomic conditions on bond risk premia. Independent, concurrent research by Bai

(2010) also demonstrates that macro factors can be exploited for improving excess

stock return predictions1

While the issue of return predictability is still disputed, there appears to be

more consensus that the level of volatility is predictable to some extent. Several ap-

proaches have been developed for this purpose, ranging from GARCH and stochastic

volatility models to realized volatility measures based on high-frequency returns, see

Andersen et al. (2006) for a recent review. In addition, several studies document a

relation between stock market volatility and macroeconomic conditions, with volatil-

ity being substantially higher during business cycle recessions, see Schwert (1989)

and Hamilton and Lin (1996), among others. In this paper we also consider the use

of macro factors extracted for predicting the volatility of monthly stock returns.

When using the factor-based approach for forecasting excess stock returns and

volatility, several choices need to be made. Among others, we have to decide upon

which individual variables are used in the factor construction and how many factors

are included in the predictive regression model. While we adopt a standard approach

for the latter issue (following previous studies in the macro forecasting literature), we

examine the former issue in detail. Specifically, we consider the added value of several

approaches for pre-selection of the macro variables that enter the factor construction

stage, relative to the standard approach of simply including all available variables.

This relates to the issue that in the standard approach the factors are taken to be

the first few principal components of the macro variables, which are constructed

without taking into account the purpose for which the factors are going to be used.

1We only became aware of this project while completing the current work. Several features
distinguish our paper from Bai (2010). First, Bai (2010) only considers predictive regressions for
excess return, while we also use macro factors for volatility. Second, we examine the possibility of
pre-selection of macro variables that are used in the factor construction, while Bai (2010) does not.
(She instead examines the possibility to select the most informative factors after their construction.)
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In case the factors are used in predictive regressions as we do in the present paper,

it need not necessarily be the case that these principal components contain the most

relevant information for the variable that we aim to forecast, as shown by Boivin

and Ng (2006) and Bai and Ng (2008), among others. The variable pre-selection

procedures that we consider here explicitly take into account the predictive ability

of the individual macro variables for the variables of interest, i.e. the excess stock

return and volatility.

We conduct an empirical analysis of the usefulness of the factor-augmented re-

gression models for out-of-sample prediction of monthly US excess stock returns and

volatility over the period January 1980 - December 2005. In addition to the most

commonly applied financial variables such as the dividend yield and the short-term

interest rate, we construct factors based on a comprehensive set of 116 individual

macroeconomic variables. The added value of the macro factors in the predictive

regressions is assessed both in statistical as well as in economic terms. On the one

hand, we consider the directional accuracy of the forecasts. For excess returns, we

examine the ability of the factor-augmented predictive regressions to correctly pre-

dict its sign (market timing). For volatility, we consider the sign relative to the

historical median level (volatility timing). Hit ratios, defined as the proportion of

forecasts for which the actual and predicted signs match, are used to evaluate the

directional accuracy of the forecasts. On the other hand, we assess the economic

value of the return and volatility forecasts by using them in active mean-variance

investment strategies. In addition to standard performance measures such as the

Sharpe Ratio, we use a utility based metric to evaluate how much an investor would

be willing to pay to use the predictions from the factor-augmented models rather

than those from a benchmark model.

Our results provide convincing evidence that the factor-based approach is suc-

cessful in predicting excess returns and volatility along both dimensions. First, the
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factor-based predictive regressions have superior market timing and volatility timing

ability compared to several benchmark models that include only valuation ratios and

interest rate related variables, and possibly individual macro variables. In addition,

the historical average return forecast is beaten as well. Second, using the excess

return and volatility forecasts in active investment strategies, we find considerable

economic value of the factor-based predictive regression models. A mean-variance

investor would be willing to pay an annual performance fee of several hundreds of

basis points to switch from the predictions offered by the benchmark models to those

of the factor-based models. The active investment strategies also outperform passive

buy-and-hold benchmarks. An important finding of our analysis is that the perfor-

mance of the factor-based predictive regression models is stable over time. Whereas

the benchmark models, especially the model including financial variables only, suf-

fer from a substantial deterioration in performance during the 1990s, the predictive

accuracy of the factor-based models remains stable or even improves.

Several alternative approaches are available to handle the issue of model un-

certainty. First, we may consider variable selection, trying to identify the most

relevant individual predictors at each point in time, as in Pesaran and Timmer-

mann (1995). This strategy has several drawbacks though. For example, possibly

valuable information in the variables that are not selected for inclusion in the predic-

tive regression is discarded completely. Additionally, selection is necessarily based

on past performance, which is no guarantee for future performance, especially in

light of the well-documented instability of predictive relations between returns and

financial and macro variables. Second, we may apply (Bayesian) model averaging

(Avramov, 2002; Cremers, 2002), or forecast combination (Aiolfi and Favero, 2005;

Timmermann, 2008; Huang and Lee, 2010; Rapach et al., 2010). In principle this is

an attractive way to account for model uncertainty, but still only a limited number

of variables can be considered in this approach.
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The paper is structured as follows. Section 2 develops the specification of the

factor-augmented predictive regression models. Two procedures for preselecting the

macro variables that are included in the factors are also discussed. Section 3 provides

details on the data set used in the empirical analysis, various implementation issues,

and the benchmark models that are used to judge the performance of the factor-

augmented predictive regressions. Sections 4 and 5 present the empirical results,

focusing on market timing and volatility timing ability of the predictive regressions,

and on their economic value in investment strategies, respectively. Section 6 draws

conclusions.

2 Factor-augmented predictive regressions

We consider one-period ahead forecasts of excess stock returns and volatility based

on linear regression models. In this section, the model specification is described in

detail in terms of predictive regressions for excess returns. Exactly the same set-up

is used for (log) volatility.

In the conventional approach, the predictive regression model for excess returns

takes the form

re,t+1 = β0 + β′
xxt + β′

zzt + εt+1, (1)

where re,t+1 is the excess stock return in period t+1, xt = (x1t, . . . , xkt)
′ is a (k× 1)

vector of macroeconomic predictor variables, and zt = (z1t, . . . , zlt)
′ is an (l × 1)

vector of financial predictor variables. Throughout it is assumed that the values of

xt and zt are available at the end of period t.

The key issue in the empirical specification of (1) is the content of the vectors xt

and zt. Multiple candidates typically are available, especially for the macroeconomic

variables. Including all of them is not recommended in that case, as the resulting

parameter estimation uncertainty would adversely affect forecast accuracy. As dis-
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cussed in the introduction, one possibility to avoid this issue would be to apply a

variable selection procedure. This typically boils down to selecting those variables

that have had the strongest predictive ability for excess returns during the recent

past. Alternatively, model averaging or forecast combination may be employed, con-

structing a weighted average of forecasts from a range of models of the form (1) with

different variables in xt and zt. In both approaches, the number of variables that can

be considered is still fairly limited. Furthermore, variable selection procedures even-

tually completely discard the information embedded in those variables not selected

for inclusion in the model.

The approach we consider in this paper rests on the assumption that the k

available macroeconomic variables obey a factor structure of the form

xt = Λft + et, (2)

where ft is an (r × 1) vector of common factors, with r being much smaller than

k. The factors ft are assumed to be mutually orthogonal and in decreasing order

in terms of their ability to explain the variance of the macroeconomic variables

xt. The factors are unobserved but can be estimated consistently by means of

principal component analysis, as discussed in Stock and Watson (2002a, 2002b),

among others. Given such estimates of the factors, we consider a factor-augmented

predictive regression for excess returns of the form

re,t+1 = β0 + β′
fft + β′

zzt + εt+1. (3)

The main advantage of this factor-based approach is that the number of macro

variables k can be rather large, while still the information in all variables is exploited.

A possible drawback of the above procedure is that the factors ft are constructed

regardless of the relation between the individual predictors xit, i = 1, . . . , k and the
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target variable re,t+1. Intuitively, while the first few principal components capture

the bulk of the variation in the macroeconomic variables xt, it need not necessarily

be the case that this is the information that is most relevant for forecasting excess

returns. More accurate forecasts may be obtained by taking into account the specific

target when constructing the factors. Recent studies such as Bair et al. (2006);

Boivin and Ng (2006) and Bai and Ng (2008) show that when the variables used

for factor construction are pre-selected based on the predictive ability of xit for the

target variable, the forecasting performance of the factor-augmented models can

indeed be improved in comparison with the models that simply use all the available

macro variables.

Existing procedures for constructing factors that take into account the target

variable typically boil down to reducing the initial set of macroeconomic variables

{xit}ki=1 by applying some sort of variable selection procedure. Here we consider the

‘thresholding’ rules advocated by Bai and Ng (2008). These are described intuitively

in the remainder of this section, with full details being provided in Appendix A.

2.1 Pre-selecting macroeconomic variables

The first variable selection procedure we consider, called ‘hard’ thresholding, is based

on the individual predictive content of xit for re,t+1. Specifically, for each predictor

xit, i = 1, 2, . . . , k, we regress re,t+1 onto xit and zt, that is, we estimate the model

re,t+1 = β0 + βx,ixit + β′
z,izt + εi,t+1. (4)

We then construct the factors ft by principal components as before, but only from

those predictors for which the coefficient βx,i in this regression is significantly differ-

ent from zero at a given significance level α.

The hard thresholding procedure evaluates each predictor in isolation, ignor-
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ing the (possibly correlated) information in other predictors. This may lead to

the selection of a subset of xt consisting of very similar macroeconomic predictors.

To overcome this problem, Bai and Ng (2008) suggest a ‘soft’ thresholding rule,

which does take other candidate variables into account when selecting the predic-

tors. Specifically, the soft thresholding procedure makes use of the Least Angle

Regression (LARS) methodology, originating from Efron et al. (2004), to select a

limited number of informative variables out of a large group. The main idea is to

add predictors one at a time, starting with the predictor that is most correlated

with the target variable. This predictor’s coefficient is increased from its starting

value of zero, up to the point where the residual is equally correlated with the pre-

dictor chosen initially and a second predictor. This second predictor is then added

to the so-called ‘active set’, and the coefficients on both predictors in this set are

now simultaneously increased, in such a way that the residual is equally correlated

with these two predictors and with a third predictor, which then enters the active

set. This process can be repeated until the set of candidate predictors is exhausted

(provided the number of candidates k is less than the number of observations T ). In

this way, a complete ranking of the candidate predictors is obtained. Alternatively,

LARS can be used as a variable selection method by stopping the algorithm after a

prespecified number of predictors has been selected. This procedure closely approx-

imates the more well-known Lasso method proposed by Tibshirani (1996); see Efron

et al. (2004) and Bai and Ng (2008) for a discussion of this similarity. It should be

noted that the soft thresholding procedure as descirbed above is not computation-

ally intensive due to the availability of an efficient algorithm for LARS proposed in

Efron et al. (2004). In fact, the soft thresholding procedure has a computational

cost of the same order as ordinary least squares.

Intuitively, soft thresholding is similar to a ‘specific-to-general’ model selection

procedure or ‘forward stepwise regression’, where predictors are added to the model
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one at a time. The predictor that is added in a given iteration is the variable that

has the maximum correlation with the residual vector from a regression of the tar-

get variable to the predictors already selected previously. The main difference is

that soft thresholding performs variable selection and shrinkage of regression coef-

ficients simultaneously. This follows from the fact that LARS effectively optimizes

an objective function that can be written in terms of a penalized regression. This

shrinkage property of the LARS has the potential of providing an additional advan-

tage when the objective is to forecast excess stock returns. As shown in Campbell

and Thompson (2008), shrinkage of the regression coefficients (either using theoret-

ical considerations or econometric techniques) improves the accuracy of predictive

regressions for excess returns.

3 Data, implementation details, and benchmark

models

3.1 Data

We aim to predict monthly excess returns and volatility on the Standard & Poor’s

(S&P) 500 index. The sample period runs from January 1970 until December 2005.

As discussed below, we use a ten-year moving window for model specification and

estimation, such that one-month ahead forecasts are made for January 1980 onwards.

The risk-free rate is proxied by the 1-month T-bill rate, for which we use the Fama-

Bliss rate from CRSP. Unfortunately, this series was discontinued at the end of 2001.

For the remaining years in our sample period we use the 4-week T-Bill rate measured

at close on the last trading day of each month. For constructing a measure of monthly

volatility, we follow the recent literature that indicates that highly accurate measures

of volatility for a certain period can be obtained from higher frequency returns (see

Fleming et al., 2003; Andersen et al., 2006, among others). This motivates us to
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opt for the ‘realized volatility’ based on daily returns. Specifically, following French

et al. (1987) and Akgiray (1989), we measure the monthly realized volatility by

σ2
t =

nt∑
i=1

(ri,t − r̄t)
2

[
1 +

2

nt

nt∑
j=1

(nt − j)ϕ̂j
t

]
, (5)

where nt denotes the number of trading days in month t, and r̄ and ϕ̂t denote the

mean and the first-order autocorrelation, respectively, of the daily returns in month

t. The correction to the sum of squared daily returns in (5) aims to account for the

non-zero first-order autocorrelation in daily index returns due to non-synchronous

trading of securities and other market microstructure effects (see French et al., 1987;

Lo and MacKinlay, 1990, for example). In the predictive regression models, we

use the natural logarithm of the volatility measure, log(σ2
t ), as dependent variable

to assure positive predictions and compute the one-period ahead expectation of

volatility assuming a lognormal distribution for the realized volatility measure, see

Andersen et al. (2006).

As discussed in the previous section, we use two types of predictors, namely

macroeconomic and financial variables, in the predictive regression models for excess

returns and its volatility. Our selection of financial predictors zt consists of commonly

accepted variables, namely the dividend yield, the price earnings ratio, the risk

free rate and its first lag and the default spread (defined as difference between the

yields on Moody’s Baa and Aaa rates). Valuation ratios that combine accounting

measures of companies with their market valuation have a long tradition in stock

return predictability and have been found to be positively correlated with future

excess returns, see Fama and French (1988) and Campbell and Thompson (2008),

among others. We include the risk free rate as it is also used in the construction of

the excess returns and we use the default spread as a proxy for market risk. In the

predictive regression model for volatility, we also include the first lag of the natural
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logarithm of the volatility measure to account for the strong persistence in stock

return volatility.

For the macroeconomic variables xt that are used for extracting the factors ft,

we use an updated version of the dataset of Stock and Watson (2005). The dataset

consists of 127 macroeconomic variables.2 We exclude four variables related to stock

prices and corresponding financial ratios as well as all interest rate related variables,

as we intend to separate the information in financial indicators and macroeconomic

conditions. Put differently, we aim for the financial predictors and the macroe-

conomic factors to embed genuine, complementary information for predicting the

excess returns and volatility. The remaining dataset consists of 106 macro variables,

classified in the following twelve categories: output and income (17), employment

and hours (29), sales (2), consumption (1), housing starts and sales (10), inventories

(3), orders (5), exchange rates (5), money and credit quantity aggregates (10), price

indexes (20), average hourly earnings (3) and miscellaneous (1), with the number

of series in the category given in parentheses. We transform the series, whenever

appropriate, to ensure stationarity by using log-levels, annual differences and annual

log differences. Outliers are defined as the observations that deviate from the me-

dian value of the sample by more than six interquantile ranges and in each individual

series these are replaced by the median value of the previous five observations (see

Stock and Watson, 2005, for details). To avoid any look-ahead bias, the macroe-

conomic variables are lagged by one month. By this we mean that xt contains the

values of the macro variables concerning month t−1, which typically are released at

some point during month t. Detailed description of the individual macroeconomic

variables is provided in Appendix B.

2The original dataset of Stock and Watson (2005) includes 132 variables but due to the data
availability when updating the variables from their original sources we had to exclude 5 variables.
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3.2 Implementation details

The empirical application of the factor-augmented predictive regression (3) with (2)

requires several decisions to be made.

First, we emphasize that we use a fully recursive forecasting approach, in the

sense that for predicting the excess return and volatility in period t+1, we only use

historically available information up to and including period t for all parts of the

model specification, including the pre-selection of macro variables, the construction

of the factors with principal component analysis, and the estimation of the coef-

ficients in the predictive regressions. Given the existing evidence for the presence

of structural breaks in the relation between excess returns and financial and macro

predictors (see the references in the introduction), we use a moving window ap-

proach, with the window length fixed at ten years (120 monthly observations).3 As

demonstrated by Pesaran and Timmermann (2004) ignoring structural breaks can

be especially costly when predicting the sign of excess returns, which is one of the

aspects we focus on in our empirical analysis.

Second, a crucial issue concerns the number of factors r to be included in the

predictive regression (3). Following Stock and Watson (2002b), among others, we

use the Bayesian Information Criterion (BIC) for this purpose, where at least one

and at most six factors are included. Furthermore, we generalize the model in (3)

allowing for up to two lags of each factor to be included. To keep the computational

burden at a feasible level, we do not perform an exhaustive search across all possible

combinations of the first six principal components and lag structures. Instead, we

assume that factors are included sequentially in order of importance,4 while the

number of lags is assumed to be the same for all included factors.5

3An alternative approach would be to consider a dynamic ‘optimal’ window length as in Pesaran
and Timmermann (2002, 2007), based on statistical tests for structural breaks.

4By this we mean that when the j-th principal component is included in the predictive regression
for j = 2, . . . , 6, the first j − 1 principal components are as well.

5We examine the added value of selecting the number of factors (and their lags) by examining
the performance of a predictive regression model with a fixed number of factors. For this purpose,
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Figure 1 summarizes the results of this model selection procedure. The graphs on

the left show that BIC selects parsimonious models for the excess return regressions.

For most windows only the first principal component is included, especially when the

factors are constructed from all macro variables. Multiple factors are included more

often when pre-selection of the macro variables is applied. At first sight this finding

may seem puzzling, in the sense that it intuitively less factors should be required

to capture the information in a smaller set of variables. However, it should be kept

in mind that the thresholding rules aim to select those macro variables that have

relevant predictive information for excess returns. This should then also apply to the

principal components of the selected subset of variables, such that more factors may

be included. The same observations applies to the predictive regressions for volatility,

although multiple factors also are included quite frequently when no preselection of

the macro variables is done. Interestingly, for both returns and volatility lags of the

factors are almost never included, except for the excess return regressions during

a short period centered around 1980. This may be interpreted as showing that

any relevant information contained in these macro variables is incorporated in stock

prices and volatility within the next month.

- insert Figure 1 about here -

Third, we need to specify the significance level in the hard thresholding pro-

cedure. Given the limited predictability of excess returns, we employ fairly liberal

(one-sided) significance levels of 0.10 and 0.15, corresponding with threshold levels α

for the t-statistic of βx,i of 1.28 and 1.04 (in absolute value), respectively, in (4). For

these significance levels the average number of variables selected into the predictive

regression for excess returns is equal to 35 and 45. For the volatility models, the

we consider the factor-augmented model that only includes the first principal component (and no
lags), as this is supposed to capture the bulk of the variation in the macroeconomic variables.
Results for this single-factor model are qualitatively similar to the results reported here, and are
available upon request.
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corresponding numbers are 48 and 58. Figure 2 shows that the number of selected

variables varies substantially over time. For example, for the excess return regres-

sions and a significance level of 0.10, it ranges between 6 (for windows ending in

1982) and 79 (for some windows ending in 2001). It is also interesting to note that

for the predictive regressions for volatility the number of selected variables seems to

gradually decline over time. There seems to be no relation between the number of

individual variables selected for the factor construction and the number of factors

included in the predictive regressions, in the sense that the correlation between these

two characteristics is very close to zero in all cases.

- insert Figure 2 about here -

Fourth, we need to decide upon a decision rule for the soft thresholding ap-

proach for determining the subset of predictors to be included in the construction

of the factors ft. The LARS algorithm provides a complete ordering of the available

macroeconomic variables according to their predictive ability. Hence, in principle it

can be combined with any decision rule. An obvious approach would be to use infor-

mation criteria, but in practice this results in the selection of a rather small number

of predictors. Considering the limited predictability of excess returns, we select the

first 60 variables that are included in the ‘active set’ in the LARS algorithm.

3.3 Benchmark models

We consider three benchmark models to evaluate the value added of the factor-

augmented predictive regression models. The first benchmark model discards the

information in the macroeconomic variables altogether and only includes the finan-

cial variables zt that are also used in the factor-augmented regressions. This bench-

mark enables us to observe if the macro factors indeed bear additional information

for predicting the excess stock returns and volatility. The second benchmark model
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uses individual macroeconomic variables instead of factors. Specifically, we include

the three variables with the largest t-values (in absolute value) for their coefficient in

the regression (4) in the hard thresholding procedure.6 The aim of this benchmark

is to examine the benefits of using factors that contain information from a large

number of macroeconomic variables relative to using the most promising individual

macroeconomic predictors. The third benchmark model revisits the issue of pre-

dictive (in)ability of financial and macroeconomic predictors by using the historical

average as the prediction of the excess return, see Welch and Goyal (2008). Given

its strong persistence, for volatility we use a random walk forecast in this case.

4 Market timing and volatility timing

We evaluate the performance of the factor-augmented predictive regressions in two

different ways. In the next section, we assess their economic value when the ex-

cess return and volatility forecasts are used in active investment strategies. In this

section, we consider the quality of the forecasts in statistical terms by evaluating

their directional accuracy. For excess returns, we examine the ability of the factor-

augmented predictive regressions to correctly predict its sign, which we refer to as

market timing. For volatility, it seems crucial to be able to predict high and low

volatility regimes and therefore, following Marquering and Verbeek (2004a), we con-

sider the sign relative to the median over the relevant 10-year moving window that is

used for factor construction and model estimation, which we label volatility timing.

We focus on the directional accuracy of the return and volatility predictions, as this

generally is quite closely related to their economic value in terms of the performance

of investment strategies based on the forecasts, see Leitch and Tanner (1991).

6In an earlier version of the paper, we used annual inflation, annual growth of industrial pro-
duction and the annual growth rate of money supply, as in Pesaran and Timmermann (1995). This
approach is obviously not as flexible as the current approach as it uses same variables each period.
Results for this alternative specification are available upon request.
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4.1 Methodology

We assess the market (volatility) timing ability by means of the hit ratio, defined

as the proportion of months for which the sign of the excess return (volatility)

is predicted correctly. We formally test the null hypothesis of no market timing

ability by means of the statistic proposed in Pesaran and Timmermann (1992). This

generalization of the Henriksson-Merton (HM) statistic tests whether the empirical

hit ratio is significantly higher than the expected hit ratio under independence of

the signs of the actual value and the forecast. For excess returns, the statistic is

defined as

PT =
P̂ − P̂∗√

V̂ (P̂ )− V̂ (P̂∗)
(6)

where P̂ is the actual hit ratio P̂ =
∑n−1

t=0 I{re,t+1r̂e,t+1}/n with I{A} being an indi-

cator function that takes the value 1 if the argument A (in this case the product

of the actual excess return re,t+1 and the forecast r̂e,t+1) is positive and 0 other-

wise, and n is the number of months in the forecast period. Similarly P̂∗ is the

expected hit ratio under independence, computed as P∗ = P̂rP̂r̂ + (1 − P̂r)(1 − P̂r̂)

where P̂r =
∑n

t=1 I{re,t+1}/n and P̂r̂ =
∑n

t=1 I{r̂e,t+1}/n are the proportion of months

for which the actual returns and the predicted returns, respectively, are positive.

Finally, V (P̂∗) and V (P̂ ) are estimates of the variances of P̂∗ and P̂ . Under the

null hypothesis of no market timing ability, the PT statistic is standard normally

distributed asymptotically.

The PT test relies upon the assumption that the indicator functions I{re,t+1}

and I{r̂e,t+1} do not exhibit serial dependence. For the monthly excess returns this

assumption may hold, but given the extensive evidence on volatility clustering it is

likely to be violated for volatility. We assess this issue in the following way. The

PT statistic as defined in (6) is asymptotically equivalent to a (one-sided) test of
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the significance of the slope coefficient in the regression

I{re,t+1} = a+ bI{r̂e,t+1} + ηt, (7)

see Breen et al. (1989). We examine the significance of the slope coefficient b by

means of its t-statistic based on heteroscedasticity and autocorrelation consistent

(HAC) standard errors to address the relevance of serial correlation in the indicator

functions. The resulting test is denoted as BGJ-HAC.

In addition to the separate evaluation of the directional accuracy of the excess

return and volatility forecasts, we also consider the market and volatility timing

ability of the predictive regression models jointly. For this purpose, we employ a

generalization of the nonparametric HM test proposed by Marquering and Verbeek

(2004b) allowing for four categories, namely combinations of positive or negative

excess return with high or low volatility. More explicitly, the test is based on the

following contingency table, where ξt denotes the median level of volatility during

the 10-year moving window ending in month t:

re,t+1 ≤ 0 re,t+1 ≤ 0 re,t+1 > 0 re,t+1 > 0 Total
σ2
t+1 ≤ ξt σ2

t+1 > ξt σ2
t+1 ≤ ξt σ2

t+1 > ξt
r̂e,t+1 ≤ 0, σ̂2

t+1 ≤ ξt n1,1 n1,2 n1,3 n1,4 n1,0

r̂e,t+1 ≤ 0, σ̂2
t+1 > ξt n2,1 n2,2 n2,3 n2,4 n2,0

r̂e,t+1 > 0, σ̂2
t+1 ≤ ξt n3,1 n3,2 n3,3 n3,4 n3,0

r̂e,t+1 > 0, σ̂2
t+1 > ξt n4,1 n4,2 n4,3 n4,4 n4,0

Total n0,1 n0,2 n0,3 n0,4 n

Given the above contingency table the HM test statistic takes the form

HM =
4∑

i,j=1

[(
ni,j − ni,0n0,j

n

)2
ni,0n0,j

n

]
, (8)

Under the null hypothesis of no joint market timing ability, the test statistic follows

a χ2 distribution with nine degrees of freedom.
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Like the PT test in (6), the HM statistic in (8) assumes the absence of serial

correlation in the signs of the actual and predicted excess returns and volatility. As

discussed before, this is a rather unrealistic assumption for volatility in particular,

invalidating the HM test. We address this issue by means of the testing framework

recently proposed by Pesaran and Timmermann (2009). Pesaran and Timmermann

(2009) develop tests of independence for multicategorical variables based on canoni-

cal correlations from dynamically augmented reduced rank regressions, which are ro-

bust in the presence of serial dependencies. The crucial ingredient of this approach is

to define (3× 1) vectors yt+1 = (y1,t+1, y2,t+1, y3,t+1)
′ and ŷt+1 = (ŷ1,t+1, ŷ2,t+1, ŷ3,t+1)

′

representing the occurrence of the different categories. Specifically, in line with the

contingency table given above, define yi,t+1, i = 1, 2, 3 as

y1,t+1 = 1 if re,t+1 ≤ 0 and σ2
t+1 ≤ ξt, and =0 otherwise,

y2,t+1 = 1 if re,t+1 ≤ 0 and σ2
t+1 > ξt, and =0 otherwise,

y3,t+1 = 1 if re,t+1 > 0 and σ2
t+1 ≤ ξt, and =0 otherwise,

and ŷi,t+1, i = 1, 2, 3, similarly but based on the predictions r̂e,t+1 and σ̂2
t+1. As

shown by Pesaran and Timmermann (2009), in case the multicategorical variables are

serially independent, a test of independence can be based on the canonical correlation

coefficients between yt+1 and ŷt+1. We may then consider both a maximum canonical

correlation test and a trace test based on the average canonical correlation. The

latter in fact is identical to the standard Pearson chi-square contingency table test

of independence, as given in (8). In the case of serially dependent outcomes, a valid

test of independence can be constructed using canonical correlations of suitably

filtered versions of yt+1 and ŷt+1.

The tests of Pesaran and Timmermann (2009) can also be obtained within a

regression framework. Specifically, in the absence of serial dependence a test of
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independence between the actual and the predicted signs of the excess returns and

volatility corresponds with testing γ = 0 in the regression

θ′yt+1 = c+ γ′ŷt+1 + ηt, (9)

where θ is a vector of weights for the different categories of the actual signs. Note that

in case of two categories, this reduces to the regression in (7). In the multicategory

case, the null hypothesis γ = 0 may be tested straightforwardly by means of an

F -test, but the result obviously depends on the values of the ‘nuisance parameters’

θ. A standard approach in this case is to take the maximum F -test over all possible

choices of θ, which is identical to testing the null hypothesis that the largest canonical

correlation between yt+1 and ŷt+1 is equal to zero. Note that the largest canonical

correlation between yt+1 and ŷt+1 being equal to zero when the actual and predicted

signs of the excess returns and volatility are independent implies that in fact all three

canonical correlations between yt+1 and ŷt+1 are zero in this case. This leads to the

idea of the trace statistic, which exactly tests this hypothesis. The trace statistic

also corresponds with testing the null hypothesis that the rank of the matrix Π is

equal to 0 in the reduced rank regression

yt+1 = a+Πŷt+1 + ηt. (10)

As shown by Pesaran and Timmermann (2009), in the case of serial dependence in

the actual and predicted signs, robust tests of independence may be obtained by

augmenting the regressions (9) and (10) by an appropriate number of lagged values

of y and ŷ. Alternatively, the serial correlation may be account for by using a HAC

covariance matrix In our empirical analysis, we employ the trace statistic based on

(10) with a HAC covariance matrix with Bartlett weights, using the Andrews (1991)

procedure for automatic lag length selection. As discussed in Pesaran and Timmer-
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mann (2009) is asymptotically chi-squared distributed with nine degrees of freedom,

but this may be a poor approximation to the finite-sample distribution given the

discrete nature of yt+1 and ŷt+1 in (10). For this reason, we employ simulation to

obtain the appropriate critical values for the sample size in our empirical application.

4.2 Empirical results

Table 1 displays hit ratios for the excess return and volatility forecasts for all mod-

els considered. We show results for the complete out-of-sample period from January

1980 until December 2005, as well as for subperiods spanning the first and second

half. Panels A and B of the table show hit ratios for excess returns and volatil-

ity individually. The bottom panel displays hit ratios for joint market timing and

volatility timing, i.e. the numbers shown are the proportion of months for which the

signs of excess returns and volatility both are predicted correctly. The corresponding

test statistics for evaluating the significance of the market and volatility timing are

shown in Table 2.

- insert Table 1 about here -

Panel A of Table 1 reveals several interesting results concerning the market tim-

ing ability of the factor-augmented predictive regressions. First, over the complete

out-of-sample period the factor-augmented models achieve hit ratios between 57.4%

and 62.5%, which all are significantly higher than the expected hit ratio under inde-

pendence according to the PT test and the HAC t-statistic of the slope coefficient

in (7), see Table 2. It is also interesting to note that in most cases the values of the

PT test and the BGJ-HAC statistic are close, which corresponds to the lack of serial

dependence in the signs of the actual and predicted excess returns.

- insert Table 2 about here -
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The hit ratios achieved by the factor-augmented models exceed those of bench-

mark models I and II, with the single exception that the model using the strictest

hard thresholding rule (TRS II) has a slightly lower hit ratio than the first bench-

mark model. This finding suggests that macroeconomic variables do bear relevant

additional information for market timing, relative to the valuation ratios and in-

terest rate related variables considered here. Moreover, it is better to extract the

information from a large panel of macroeconomic variables by means of factors than

to include a small number of specific macro variables as in the second benchmark

model. In fact, the low hit ratio of this model (also compared to the first benchmark

model) suggests that including individual macroeconomic variable actually deterio-

rates market timing ability. Relative to the third benchmark model, the performance

of the factor-augmented predictive regressions seems less convincing, with only the

standard factor model achieving a clearly higher hit ratio. However, to a large extent

the market timing ability of the third benchmark is spurious, in the sense that only

four percent of the excess return predictions from this model are negative. Hence,

an investor using this approach would almost always invest in stocks without trying

to time the market. This is confirmed by the test results in Table 2, which shows

that the third benchmark model does not have significant market timing ability. In

fact, for the second sub-period the test statistics cannot be computed due to the

fact that after 1992 all excess return predictions from this model are positive.

Second, comparing the predictions from the different factor-augmented models

among each other, it is seen that the ‘standard’ approach of including all available

macroeconomic variables for extracting the factors at each point in time performs

best. Apparently, market timing ability is not enhanced by pre-selecting the (pre-

sumably) most informative predictors which the other three methods aim to achieve.

Third, the market timing ability of the factor-augmented predictive regressions

seems to be fairly stable over time, in the sense that the hit ratios for the first and
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second half of the out-of-sample period do not differ dramatically. In fact, the hit

ratios are higher for the period 1993-2005 for all four approaches. The PT and

BGJ-HAC results in Table 2 also show that the significance of the market timing

ability does not differ across the two sub-periods. This finding is in sharp contrast to

existing evidence, which suggests that the market timing ability of typical predictive

regressions has reduced considerably since the early 1990s. This is indeed confirmed

by our results for the first benchmark model, which achieves the highest hit ratio of

almost 63% during the period from 1980-1992, but then suffers a dramatic decline

by ten percentage points to only 53% in the period 1993-2005. The corresponding

PT and BGJ-HAC statistics in Table 2 decline from highly significant values of 2.73

and 2.42 for the first sub-period to insignificant values close to zero for the second

subperiod.

We examine the (in)stability of the market timing ability of the different models

in more detail by computing hit ratios for rolling windows of 60 months. These are

displayed in Figure 3 together with the expected hit ratios under independence of

the signs of the excess return forecasts and realizations. The fifth panel of Figure 3

clearly reveals the large decline of the market timing ability of predictive regressions

that include only financial variables between 1995-1997. After 1995 the hit ratios for

the second benchmark model mostly are even below the expected hit ratios under

independence, confirming the limited ability of this model with individual macro

variables to predict the sign of the excess return correctly. In contrast, the perfor-

mance of the ‘standard’ factor-augmented predictive regression model is much more

stable and consistently above the expected hit ratio under independence. The hit

ratios of the factor models with pre-selection of macro variables show considerably

more fluctuation, although they do exceed the hit ratios expected under indepen-

dence most of the time. For example, for the first hard-thresholding model, the

hit ratio varies between 41% for windows around 1990 and approximately 65% for
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windows centered around 1985, 1995 and after the year 2000. Finally, the bottom

panel of Figure 3 clearly demonstrates the lack of market timing ability of the his-

torical mean return, in the sense that the actual hit ratio generally coincides with

the expected hit ratio under independence.

- insert Figure 3 about here -

The market timing results suggest that the factors extracted from macroeconomic

variables may have useful information for predicting the sign of the excess stock

returns. Ultimately, accurately predicting the magnitude of the excess returns may

be at least as important as correct sign predictions. We assess this aspect here in

two different ways. First, we examine the significance of the slope coefficient in a

regression of the actual excess returns on the corresponding forecasts,

re,t+1 = a+ br̂e,t+1 + ηt, (11)

where again we use HAC standard errors to account for serial correlation. This is

a robust version of the test used in Bossaerts and Hillion (1999). The results in

Table 2 show that the performance of all models declines in the second half of the

out-of-sample period. While the slope coefficient is significantly different from zero

(and positive) at the 5% level or better for the subperiod 1980-1992, it becomes

insignificant for the period 1993-2005. For the first benchmark model, the estimate

of b in (11) even turns negative. The only exception is that the factor-augmented

model based on soft thresholding appears to retain some of its predictive ability,

with the HAC t-test being significant at the 10% level for the latter period.

Second, we evaluate the mean squared prediction error (MSE) of the factor-

augmented predictive regressions relative to the MSE of the historical mean predic-

tion used in the third benchmark model. Specifically, following Welch and Goyal

(2008) and Campbell and Thompson (2008), among others, we consider the out-of-
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sample R2 defined as

R2
OoS = 1−

∑n−1
t=0 (re,t+1 − r̂e,t+1)

2∑n−1
t=0 (re,t+1 − r̄e,t+1)2

, (12)

where r̂e,t+1 is the return prediction obtained from one of the factor-augmented

regression models and r̄e,t+1 is the historical average return computed using the ten-

year moving window ending in period t, that is, the excess return prediction used

in the third benchmark model. Positive (negative) values of R2
OoS indicate that the

factor-augmented model achieves a smaller (larger) MSE than the historical average

return. By inspecting the path of R2
OoS for increasing values of n, we can also assess

the stability of the relative predictive accuracy of the two competing models. When

the R2
OoS increases, it means that the factor-augmented model outperforms the his-

torical average, and vice versa when the R2
OoS decreases. Figure 4 displays the path

of the R2
OoS during the complete out-of-sample period for the four factor-augmented

predictive regressions. Over the complete out-of-sample period, the R2
OoS values are

negative at around −0.10, such that the historical average return achieves a smaller

MSE than the elaborate factor-augmented predictive regressions. Interestingly, this

appears to be due completely to a small number of erratic forecasts obtained from

the factor-augmented models at the beginning of the sample period. This results in

large fluctuations in the R2
OoS values, such that they drop to levels below −1 in July

1980. Following this unfortunate start the R2
OoS generally shows an increasing pat-

tern, indicating that over the remainder of the forecast period the factor-augmented

regressions actually produce considerably more accurate excess return predictions

than the historical average return.

- insert Figure 4 about here -

Next, we turn to the volatility timing results as shown in panel B of Table 1. As

volatility exhibits much more persistence than excess returns, predicting the state
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of volatility one month ahead may be expected to be less difficult than predicting

the sign of excess returns. This is indeed reflected by the high values of the hit

ratios for the complete out-of-sample period as well as both subperiods. All models

have hit ratios above 60%, with a substantial increase in the second half of the

out-of-sample period. For the complete out-of-sample period 1980-2005 the factor-

augmented models outperform the first and second benchmark only marginally. For

the period after 1992, we find larger differences in hit ratios up to 5% between

the factor-augmented model based on soft thresholding and the second benchmark

model that includes individual macro variables. The statistics in Table 2 show that

all models have significant volatility timing ability, both for the complete out-of-

sample period as well as the two subperiods. Note that in this case the value of the

BGJ-HAC statistic is considerably smaller than the PT statistic, due to the presence

of positive serial correlation in the signs of the actual and predicted volatility.

Figure 5 shows the hit ratios for volatility forecasts over 5-year rolling windows,

together with the expected hit ratios under independence of the sign forecasts and

the actual signs. We observe that all models exhibit a similar pattern in their hit

ratio, showing a gradual increase after 1995. Note that this does not necessarily

imply that the volatility timing ability of the predictive regressions has improved

over time. For example, the actual hit ratios are at the highest level for moving

windows ending between 2000 and 2003, close to 90% for most models. This also is

the case, however, for the expected hit ratios under independence, suggesting that

the impressive values of the hit ratios are in fact not due to superior volatility timing

ability but due to volatility clustering. Apart from this exceptional period, though,

we do observe that the actual hit ratios are well above their expected values under

independence, suggesting that in general volatility timing is possible with predictive

regression models.

- insert Figure 5 about here -
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Finally, we consider the joint market and volatility timing ability, which is crucial

for a mean-variance investor who would like to make investment decisions based

on predictions of both excess returns and volatility. From Table 1, we observe

that the hit ratios of joint timing take lower values compared to those of market

and volatility timing individually. This shows that predicting the true state of

the excess return and volatility jointly is more problematic than predicting them

separately. The difference in the performance of the factor-augmented models and

benchmark models in market timing ability is reflected in the joint timing results

as this difference becomes larger during the second subsample. As in the market

timing case many of the test statistics cannot be computed for the third benchmark

model. Again this is due to the fact that some of the categories are never realized

for the third benchmark due to the lack of market timing ability.

5 Economic value

In the previous section we analyzed the market timing and volatility timing ability

of the factor-augmented predictive regression models. As mentioned before, this

generally provides some indication of the performance of active trading strategies

based on the excess return and volatility predictions. In this section, we assess this

economic value of the factor-augmented predictive regression models explicitly. For

this purpose, we consider a mean-variance investor with a one-month horizon, who

decides upon the fraction of her wealth to be allocated to stocks using forecasts

of excess returns and volatility. We use a utility based metric to evaluate how

much the investor would be willing to pay to use the predictions from the factor-

augmented models rather than those from the benchmarks. Specifically, we employ

the procedure proposed in West et al. (1993), which is frequently used for measuring

the economic value of dynamic investment strategies, see Fleming et al. (2001, 2003),

Marquering and Verbeek (2004a), De Pooter et al. (2008), and Della Corte et al.
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(2009, 2010), among others.

5.1 Methodology

We consider a risk-averse investor with mean-variance preferences, managing a port-

folio consisting of stocks and risk-free T-bills. Each month the investor decides upon

the fraction of wealth to be invested in stocks using the objective function

max
wt+1

Et(rp,t+1)−
1

2
γVart(rp,t+1), (13)

where Et(rp,t+1) and Vart(rp,t+1) are the expected value and the variance of the

portfolio return in period t + 1 conditional on the information in period t, and γ

represents the degree of relative risk aversion (RRA). The portfolio return is given

by

rp,t+1 = rf,t+1 + wt+1re,t+1,

where rf,t+1 denotes the risk-free return, and wt+1 is the fraction of wealth allocated

to stocks. We consider a myopic investor with a horizon of one month, such that

the investor solves the maximization problem in (13) each time period in order to

determine the portfolio weights for the next month. The optimal portfolio weight

for stocks is given by

w∗
t+1 =

Et(re,t+1)

δVart(rp,t+1)
. (14)

As (14) indicates, the implementation of the dynamic mean-variance strategy re-

quires predictions of the excess return and volatility for computing the optimal

portfolio weight for stocks. We assume that our investor employs the recursive

predictions of the expected excess returns and volatility obtained from the factor-

augmented regression models and the benchmark models for this purpose.

In order to mitigate the effects of forecast uncertainty the investor imposes re-

strictions on the portfolio weight. Specifically, we consider the following two scenar-
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ios. First, the investor uses the restriction w∗
t+1 ∈ [−1, 2], thus allowing for limited

short-sales and leveraging of the portfolio. In the second scenario, short-sales and

leveraging are not allowed at all, thus w∗
t+1 ∈ [0, 1].

Using the new return and volatility predictions that become available each month,

the mean-variance investor adjusts her portfolio weights if necessary. Hence, trans-

action costs are an inevitable factor that must be taken into account. At the start

of month t + 1, the investor changes the allocation to stocks from wt to wt+1. We

assume that transaction costs are a fixed proportion c of the wealth invested, such

that the portfolio return is reduced by

ct+1 = 2c|wt+1 − wt|, (15)

where the multiplication by 2 follows from the fact that the investor rebalances her

positions in both stocks and the riskfree T-bills. We consider no, medium and high

transaction costs by setting c equal to 0%, 0.1% and 0.3%, respectively.

Assuming quadratic utility, we can use the average realized utility to consistently

estimate the expected utility obtained from a given level of initial wealthW , see West

et al. (1993), that is,

U =
W

n

n−1∑
t=0

(
Rp,t+1 −

1

2

γ

(1 + γ)
R2

p,t+1

)
, (16)

where Rp,t+1 = 1+ rp,t+1− ct+1 is the gross return on the portfolio net of transaction

costs.

We assess the economic value of the factor-augmented predictive regression mod-

els by computing a ‘performance fee’, denoted as ∆, that an investor should be willing

to pay for switching from one investment strategy to another. For example, suppose

that holding a dynamic portfolio constructed using one of the benchmark models

yields the same average utility as holding a dynamic portfolio constructed using a
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factor-augmented predictive model that is subject to annual expenses, ∆, expressed

as a fraction of wealth invested. Because the investor would be indifferent between

the two strategies we can interpret ∆ as the maximum fee an investor should be

willing to pay to switch from the benchmark strategy to the strategy based on the

factor-augmented models. The magnitude of this fee is given by the value of ∆ that

satisfies

n−1∑
t=0

{(
Ra

p,t+1 −∆
)
− 1

2

γ

(1 + γ)

(
Ra

p,t+1 −∆
)2}

=
n−1∑
t=0

{
Rb

p,t+1 −
1

2

γ

(1 + γ)
(Rb

p,t+1)
2

}
(17)

where the superscripts a and b denote the alternative strategies.

We compare the economic value of the factor-augmented predictive models rela-

tive to the three benchmark models. Additionally, we also consider three buy-and-

hold strategies. These strategies assume that the investor invests a constant fraction

of 100% (0%), 50% (50%), or 0% (100%) of her wealth in stocks (risk-free T-bills),

respectively. Throughout the analysis, we set the relative risk aversion γ equal to 6.7

Finally, for conventional comparison of the portfolio performances we also compute

average returns, standard deviations, and Sharpe Ratios for each portfolio.

5.2 Empirical results

The results in Table 3 indicate that over the complete out-of-sample period from Jan-

uary 1980 until December 2005, investment strategies based on the factor-augmented

predictive regressions outperform those based on the benchmark models, with a few

exceptions. This holds irrespective of whether we consider Sharpe Ratios, as shown

in the third column, or the performance fees for switching from the benchmark mod-

els to the factor-augmented predictive models in the three rightmost columns. While

the magnitude of the economic value of the macro factors is affected by the level of

7In order to examine the sensitivity of the results to the level of risk aversion, we also consider
risk aversion levels of 2 and 10. Results are shown in Appendix C.
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transaction costs and the restrictions imposed on the portfolio weights (as discussed

in more detail below), it remains positive in all scenarios.

- insert Table 3 about here -

As an example, consider the performance of the factor-augmented models rel-

ative to the first benchmark model in the scenario where limited short sales and

leverage are allowed (w∗
t+1 ∈ [−1, 2]) and transaction costs are moderate (0.1%). In

that case the portfolios based on the factor-augmented regressions achieve annual-

ized Sharpe Ratios in the range 0.45-0.55, compared to 0.35 for the first benchmark

model. This difference is mostly due to a higher average return achieved by the

factor-augmented models ranging between 12% and 13.5% compared to 10.5% for

the benchmark. The volatilities of the portfolio returns are comparable, at around

15%. The mean-variance investor is willing to pay a performance fee ranging from

131 to 326 basis points annually for switching from the first benchmark model to

one of the factor-augmented models. This confirms the results of the market tim-

ing analysis in the previous section, in that the macroeconomic factors add relevant

information concerning the expected returns and volatility to the information em-

bedded in the financial variables in this first benchmark model. The possibilities

to exploit this additional information become somewhat more limited when short

sales and leverage are abandoned completely. The performance fees become smaller

in this case, although they remain substantial ranging between 109 and 142 basis

points.

The outperformance of the factor-augmented predictive regression models rela-

tive to the second benchmark model is particularly impressive. Again considering

the scenario with medium transaction costs and limited short sales and leverage,

the Sharpe Ratio of this benchmark is a disappointing 0.10, mostly due to a low

average return of 7.2%. The performance fees in this scenario range between 622

and 816 basis points. Put differently, the investor is willing to pay between 6-8% on
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an annual basis to replace individual macroeconomic variables by factors based on a

large database in the predictive regression models. Again, the performance fees are

reduced, to about 3-3.5%, when the portfolio weights are restricted to be between 0

and 1.

The third benchmark model, which uses the historical average excess return and

the previous month’s volatility level as predictions, appears more difficult to beat.

When limited short sales and leverage are allowed the third benchmark model actu-

ally performs better than most of the factor-augmented models, with performance

fees of around 100 basis points. Interestingly, all of the factor-augmented models

yield higher average returns than this benchmark model. The third benchmark

model achieves a considerably lower standard deviation of returns, however. Still,

the factor-augmented model with soft thresholding performs slightly better than the

third benchmark model by an annual performance fee of 50 basis points. Moreover,

when short sales and leverage are completely restricted, all factor-augmented mod-

els have a positive performance fee as well as higher Sharpe ratios. In this case, an

investor is willing to pay between 137 and 170 basis points annually to switch from

the third benchmark model to the factor-augmented models. The main consequence

of abandoning short sales and leverage is a substantial reduction in the standard

deviation of portfolio returns based on the factor-augmented models from 15% to

8% on average, see the second column of Table 3. While the portfolio standard

deviation is also reduced for the third benchmark model, the decline is much less

pronounced (from 13.3% to 10%).

The performance fees of the factor-augmented models relative to the three bench-

mark models are relatively stable across the three different levels of transaction costs

considered. By contrast, when comparing the dynamic strategies with static buy and

hold strategies, the level of transaction costs becomes much more important in eval-

uating the relative portfolio performance, especially when limited short sales and
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leveraging are allowed. In that case, the factor-augmented models still render pos-

itive performance fees when transaction costs are not included. Medium and high

transaction cost levels, however, lead to negative performance fees. Especially the

mixed portfolio with a constant weight of 50% in stocks performs well, with ∆ be-

ing approximately equal to −500 basis points in the scenario with high transaction

costs. This picture changes dramatically when short sales and leveraging are not

allowed. In this case, under medium transaction costs all factor-augmented models

have a positive performance fee ranging from 86 to 119 basis points annually against

the static mixed portfolio. The performance fees against the other two static port-

folios are considerably higher. The investor is willing to pay around 250 basis points

annually to switch from the buy-and-hold strategy in stocks to one of the factor aug-

mented models, and more than 300 basis points to switch from the static strategy

that always invests in T-bills. Interestingly, even if the transaction costs are high,

factor-augmented models still perform better than or as good as the static strategies.

An important finding is that the performance fees are highest when the factor mod-

els with thresholding rules are used for portfolio construction. This indicates that a

sensible pre-selection of the set of macroeconomic variables from which factors are

constructed adds even more economic value than simply using all available macro

variables as in the standard factor-augmented model.

The performance fees for switching from the static portfolios to the factor-

augmented predictive regressions indicate the importance of imposing restrictions

on the portfolio weights, to avoid excessive exposure to stocks but also to limit

transaction costs. This is reflected in Table 4 where we display the mean and the

standard deviation of the portfolio weights. For all factor-augmented models (as

well as for the benchmark model), we observe that the standard deviation of the

portfolio weights is reduced by 50-60% (from around 1.00 to 0.45, on average) when

short sales and leverage are abandoned.
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- insert Table 4 about here -

A crucial finding from the market timing analysis in the previous section was the

stability of the performance of the factor-augmented predictive regressions, whereas

the performance of the benchmark models deteriorates substantially during the sec-

ond half of the out-of-sample period. This is also reflected in their (relative) economic

value during the subperiods 1980-1992 and 1993-2005, as shown in Tables 5 and 6.

The portfolios based on the predictions obtained from the benchmark models expe-

rience a pronounced decline in their Sharpe Ratio. For example, the first benchmark

model (including financial variables only) achieves a Sharpe ratio of 0.59 over the

period 1980-1992, when limited short sales and leverage are allowed and transaction

costs are medium. This drops to 0.00 for the period 1993-2005. The reduction in

Sharpe ratio is less dramatic when the portfolio weights are more restricted, but still

substantial from 0.66 to 0.28. For the factor-augmented models, the Sharpe ratio is

approximately the same during the two sub-periods.

- insert Tables 5 and 6 about here -

The performance fees reveal a similar pattern. While the dynamic strategies

based on the benchmark models mostly achieve positive performance fees against

the static buy-and-hold strategies during the first half of the out-of-sample period,

these turn negative for the period after 1992. Strikingly, the factor-augmented mod-

els generally have higher performance fees during the second sub-period. Most no-

tably this holds for those factor models where thresholding rules are employed for

factor extraction. Specifically, models with hard thresholding with restricted port-

folio weights perform better than all passive strategies even when the transaction

costs are at the highest level. Allowing for short sales and leverage of the portfo-

lio increases the performance fee for switching from the benchmark models to the

factor-augmented models. However, at the same time it reduces the performance
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fees for switching from the static strategies, as more volatile returns cause a loss

of utility. For the first half of the sample period only the first benchmark model

performs marginally better than the factor-augmented models when the portfolio

weights are completely restricted. When limited short sales and leverage are allowed

the performance fee for switching to a factor-augmented model ranges from −18 to

−534 basis points under medium transaction costs.

A more detailed picture of the evolution of the performance of the factor-augmented

models relative to the benchmark models over the out-of-sample period is provided

by Figure 6, showing the fees for switching from each of the three benchmark mod-

els to factor-augmented regressions for moving windows of 60 months (with medium

transaction costs). An interesting observation from these graphs is that for the first

benchmark model, the superior performance of the factor-augmented models already

starts around the beginning of the 1990’s, whereas for the third benchmark model

it only starts around the year 2000. In fact, the third benchmark model is seen to

perform particularly well during most of the 1990s, with negative performance fees

for all four factor-augmented models. This is due to the low standard deviation of

portfolio returns obtained from the third benchmark model combined with the pro-

longed bull market with low volatility during this period. As discussed before, the

third benchmark model always predicts moderate positive excess returns after the

mid 1980’s but does not have any market timing ability. This strategy seems to work

for the bull market of the mid 1990’s when volatility was also very low. However,

with the advent of more volatile periods towards the end of this decade, the market

timing ability of the predictive models gains more importance. This explains the

dramatic improvement in the performance of the factor-augmented models starting

from the end of the 1990’s, with the fees relative to the third benchmark model

increasing to almost 1200 basis points at the end of 2003.

- insert Figure 6 about here -
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An important result from Table 6 is that the factor-augmented models that use

thresholding rules for predictor selection perform better than the factor model that

simply uses all available variables, especially when limited short sales and leverage

are allowed for. This confirms the findings of Bai and Ng (2008) in the context of

forecasting inflation. When the aim is to predict a variable with limited predictive

content such as stock returns, our findings show that a reasonable set of thresholding

rules is even more crucial also economically. For switching from the passive strat-

egy of investing 100% in stocks to the first hard thresholding rule with completely

restricted portfolio weights, for example, an investor would pay 284 basis points per

annum compared to a fee of only 168 for the standard factor model. This difference

increases when limited short sales are allowed, for which the precision of return pre-

dictions becomes more important rather than the prediction of the direction of the

market. When this scenario is considered the factor model with the soft thresholding

rule, which is relatively more sophisticated than others, outperforms the other factor

models.

The majority of previous studies focuses on the market timing ability of predic-

tive models for (excess) returns only. This is either because the objective of the

econometric methods is directed only at return prediction or because the investment

strategy is ‘discrete’, involving switching between stocks and risk-free investments

based only on the predicted sign of the excess return (see Pesaran and Timmermann,

1995; Aiolfi and Favero, 2005, among others). From this perspective, it is also inter-

esting to evaluate the performance of the factor-augmented models using only the

information in the excess return forecasts. We implement this in our mean-variance

framework by only using the return forecast in (14) while setting the conditional

volatility equal to the median volatility value during the estimation sample.8 Ta-

ble 7 exhibits the results of these strategies for the complete out-of-sample period

8Recall that we also used this as benchmark value for determining “high” and “low” volatile
periods.
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and the two subperiods. For the sake of brevity, we only display results for medium

transaction costs (0.1%). Results for other transactions cost levels are in line with

these and available upon request.

- insert Table 7 about here -

A comparison of the results in Table 7 with those in Panel B of Tables 3-6 reveals

that ignoring the volatility predictions increases both the mean and volatility of the

portfolio returns. The overall effect on the Sharpe ratio is slightly negative. The per-

formance fees for switching from the benchmark models to factor-augmented models

increase substantially for almost all cases. Especially for the third benchmark model,

which uses the historical average excess return as prediction, the performance fees

almost double. This clearly shows how this benchmark model benefits from volatil-

ity timing rather than market timing in returns, confirming the results of Fleming

et al. (2001, 2003). The benefits of volatility timing do not seem so pronounced for

factor-augmented models as the increase of the performance fee for switching from

static portfolios is very limited. When portfolio weights are completely restricted, in

almost all cases the factor-augmented models have positive performance fees, regard-

less whether the competing strategies are static or dynamic but based on benchmark

models.

6 Conclusions

While the basic question whether stock returns are predictable at all has not been

settled conclusively, the voluminous literature on this topic seems to agree that

individual macroeconomic variables do not have predictive ability for returns, at

least not for prolonged periods of time. The relation between stock returns and

individual macroeconomic predictors appears to be subject to relatively frequent

structural breaks. Hence, when a given macroeconomic variable may appear to be
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useful for forecasting stock returns over a certain period, this might very well break

down at some point. Put differently, studying return predictability with a limited

number of individual macroeconomic variables over a long time span is unlikely to

find positive results.

While the issue of return predictability is still disputed, there appears to be more

consensus that the level of volatility is predictable to some extent. In addition, sev-

eral studies document a relation between stock market volatility and macroeconomic

conditions, with volatility being substantially higher during business cycle recessions.

Nevertheless, it is unclear a priori which specific macroeconomic variables have the

most relevant information for future volatility.

The point of departure for this paper is that in reality we may consider nu-

merous macroeconomic variables, and their combined information may be useful for

predicting future stock returns and volatility to some extent. Based upon an empir-

ical analysis we document that factors extracted from a large set of macroeconomic

variables do indeed have predictive ability for monthly US excess stock returns and

volatility for the period 1980-2005. Factor-augmented predictive regression models

improve upon both benchmark models that only include valuation ratios and inter-

est rate related variables and possibly individual macro variables, as well as naive

predictors such as the historical average excess return and previous month’s volatil-

ity. The improvements in out-of-sample forecast accuracy are both statistically and

economically significant. The factor-augmented predictive regressions have superior

market timing ability and volatility timing ability, while a mean-variance investor

would be willing to pay an annual performance fee of several hundreds of basis

points to switch from the predictions offered by the benchmark models to those of

the factor-augmented models. An important reason for the superior performance of

the factor-augmented predictive regressions is the stability of their forecast accuracy,

whereas the benchmark models suffer from a forecast breakdown during the 1990s.
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Appendix A Thresholding rules

This appendix provides descriptions of the two procedures for preselection of a subset

of macro variables that are used for constructing the factors that enter the predictive

regressions. Further details of the thresholding rules can be found in Bai and Ng

(2008).

A.1 Hard thresholding

The ‘hard’ thresholding procedure selects macro variables xit based on their in-

dividual predictive content for the excess returns re,t+1. The algorithm for hard

thresholding is as follows:

1. For each macroeconomic predictor xit, i = 1, 2, · · · , k, estimate the regression

re,t+1 = β0 + βx,ixit + β′
z,izt + εi,t+1,

by least squares, where re,t+1 denotes the excess stock return in period t + 1

and zt is the (l×1) vector of valuation ratios and interest rate related variables

that are always included.

2. Sort the macro variables in decreasing order of the absolute value of the t-

statistic of β̂x,i, denoted ti.

3. Choose a (one-sided) significance level α and select the subset of predictors for

which |ti| exceeds the corresponding threshold.

4. Construct the factors ft by means of the principal components for the selected

subset of predictors.
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A.2 Soft thresholding

The ‘soft’ thresholding procedure takes other candidate macro variables into ac-

count when selecting the predictors, based on the Least Angle Regression (LARS)

methodology. Predictors are added to the model one at a time, starting with the

variable that is most correlated with the excess return. This predictor’s coefficient

is increased from its starting value of zero, up to the point where the residual is

equally correlated with the predictor chosen initially and a second predictor. This

second predictor is then added to the so-called ‘active set’, and the coefficients on

both predictors in this set are now simultaneously increased, in such a way that

the residual is equally correlated with these two predictors and with a third predic-

tor, which then enters the active set. This process can be repeated until the set of

candidate predictors is exhausted (provided the number of candidates k is less than

the number of observations T ). In this way, a complete ranking of the candidate

predictors is obtained.

Technically, the j-th iteration of the LARS algorithm proceeds as follows.

1. Compute the correlations ĉ(j) between the candidate predictor variables and

the residual excess return after the (j−1)-st iteration (thus, with j−1 candidate

predictors already included in the active set). Collecting the predictors (which

are assumed to be standardized to have mean zero and variance one) in the

(T × k) matrix X and denoting the estimate of the expected excess return

obtained in the (j − 1)-st iteration as µ̂(j−1), we have ĉ(j) = X ′(re − µ̂(j−1)).

2. Identify the candidate predictors with the largest absolute correlations and

define S(j) as the set of the corresponding indices, that is

ĉ(j),max = max
i

{|ĉ(j),i|} and S(j) = {i : |ĉ(j),i| = ĉ(j),max},

where ĉ(j),i denotes the i-th element of ĉ(j).
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3. Define the active matrix X(j) corresponding to S(j) by ‘signing’ the predictors,

that is

X(j) = (s(j),iXi)i∈J with s(j),i = sign(ĉ(j),i).

4. Let G(j) = X ′
(j)X(j) and A(j) = (ι′(j)G

′
(j)ι(j))

−1/2 where ι(j) is a vector of ones

corresponding to the size of S(j). Then define u(j) = X(j)w(j), where w(j) =

A(j)G
−1
(j)ι(j), and a(j) ≡ X ′u(j).

5. Update the estimate of the expected excess return as µ̂(j) = µ̂(j−1) + γ̂u(j),

where

γ̂ = min
i∈Sc

(j)

+

{
ĉ(j) − ĉ(j),i

Â(j) − â(j),i
,
ĉ(j) + ĉ(j),i

Â(j) + â(j),i

}

with min+ indicating that the minimum is taken over only positive components. The

algorithm is initialized with µ̂(0) = 0.
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Appendix B Macroeconomic variables

Table B.1: Base Set of Predictors used for Extracting Factors

Short Name Transf. Description

Output and Income
PI ∆ln Personal Income (AR, Bil. Chain 2000$) (TCB)
PI less transfers ∆ln Personal Income Less Transfer Payments (AR, Bil. Chain 2000$) (TCB)
IP: total ∆ln Industrial Production Index - Total Index
IP: products ∆ln Industrial Production Index - Products, Total
IP: final prod ∆ln Industrial Production Index - Final Products
IP: cons gds ∆ln Industrial Production Index - Consumer Goods
IP: cons dble ∆ln Industrial Production Index - Durable Consumer Good
IP: cons nondble ∆ln Industrial Production Index - Nondurable Consumer Good
IP: bus eqpt ∆ln Industrial Production Index - Business Equipment
IP: matls ∆ln Industrial Production Index - Materials
IP: dble mats ∆ln Industrial Production Index - Durable Goods Materials
IP: nondble mats ∆ln Industrial Production Index - Nondurable Goods Materials
IP: mfg ∆ln Industrial Production Index - Manufacturing (Sic)
IP: res util ∆ln Industrial Production Index - Residential Utilities es
IP: fuels ∆ln Industrial Production Index - Fuels
NAPM prodn lv NAPM Production Index (Percent)
Cap util ∆lv Capacity Utilization (Mfg) (TCB)

Employment and hours
Help wanted index lv Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa)
Help wan/emp lv Employment: Ratio; Help-Wanted Ads: No. Unemployed Clf
Emp CPS total ∆ln Civilian Labor Force: Employed, Total (Thous. Sa)
Emp CPS nonag ∆ln Civilian Labor Force: Employed, Nonagric. Industries (Thous.,Sa)
U: all lv Unemployment Rate: All Workers, 16 Years & Over (%,Sa)
U: mean duration ∆lv Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa)
U < 5 wks ∆ln Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa)
U 5-14 wks ∆ln Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa)
U 15+ wks ∆ln Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa)
U 15-26 wks ∆ln Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa)
U 27+ wks ∆ln Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa)
UI claims ∆ln Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB)
Emp: total ∆ln Employees On Nonfarm Payrolls: Total Private
Emp: gds prod ∆ln Employees On Nonfarm Payrolls-Goods-Producing
Emp: mining ∆ln Employees On Nonfarm PayrollsMining
Emp: const ∆ln Employees On Nonfarm PayrollsConstruction
Emp: mfg ∆ln Employees On Nonfarm PayrollsManufacturing
Emp: dble gds ∆ln Employees On Nonfarm PayrollsDurable Goods
Emp: nondbles ∆ln Employees On Nonfarm Payrolls-Nondurable Goods
Emp: services ∆ln Employees On Nonfarm Payrolls-Service-Providing
Emp: TTU ∆ln Employees On Nonfarm Payrolls-Trade, Transportation, And Utilities
Emp: wholesale ∆ln Employees On Nonfarm Payrolls-Wholesale Trade
Emp: retail ∆ln Employees On Nonfarm Payrolls-Retail Trade
Emp: FIRE ∆ln Employees On Nonfarm Payrolls-Financial Activities
Emp: Govt ∆ln Employees On Nonfarm PayrollsGovernment
Avg hrs lv Avg Weekly Hrs of Workers On Private Nonfarm Payrolls - Goods-Producing
Overtime: mfg ∆lv Avg Weekly Hrs of Workers On Private Nonfarm Payrolls - Mfg Overtime
Avg hrs: mfg lv Average Weekly Hours, Mfg. (Hours) (TCB)
NAPM empl lv Napm Employment Index (Percent)

Sales
Retail sales ∆ln Sales Of Retail Stores (Mil. Chain 2000$) (TCB)
M&T sales ∆ln Manufacturing And Trade Sales (Mil. Chain 1996$) (TCB)

Consumption
Consumption ∆ln Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB)

Housing starts and sales
HStarts: Total ln Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-) (Thous.,Saar)
HStarts: NE ln Housing Starts:Northeast (Thous.U.)S.A.
HStarts: MW ln Housing Starts:Midwest(Thous.U.)S.A.
HStarts: South ln Housing Starts:South (Thous.U.)S.A.

continued on next page
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continued from previous page

Short Name Transf. Description

HStarts: West ln Housing Starts:West (Thous.U.)S.A.
BP: Total ln Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
BP: NE ln Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A
BP: MW ln Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A.
BP: South ln Houses Authorized By Build. Permits:South(Thou.U.)S.A.
BP: West ln Houses Authorized By Build. Permits:West(Thou.U.)S.A.

Inventories
NAPM invent lv Napm Inventories Index (Percent)
M&T invent ∆ln Manufacturing And Trade Inventories (Bil. Chain 2000$) (TCB)
M&T invent/sales ∆lv Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000$) (TCB)

Orders
PMI lv Purchasing Managers Index (Sa)
NAPM new ordrs lv Napm New Orders Index (Percent)
NAPM vendor del lv Napm Vendor Deliveries Index (Percent)
Orders: cons gds ∆ln Mfrs New Orders, Consumer Goods And Materials (Bil. Chain 1982$) (TCB)
Orders: cap gds ∆ln Mfrs New Orders, Nondefense Capital Goods (Mil. Chain 1982$) (TCB)

Exchange rates
Ex rate: avg ∆ln United States;Effective Exchange Rate(Merm)(Index No.)
Ex rate: Switz ∆ln Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$)
Ex rate: Japan ∆ln Foreign Exchange Rate: Japan (Yen Per U.S.$)
Ex rate: UK ∆ln Foreign Exchange Rate: United Kingdom (Cents Per Pound)
Ex rate: Canada ∆ln Foreign Exchange Rate: Canada (Canadian$ Per U.S.$)

Money and credit quantity aggregates
M1 ∆ln Money Stock:M1(Curr,Trav.Cks,Dem Dep,Other Ckable Dep)(Bil$,Sa)
M2 ∆ln Money Stock:M2M1+Onite Rps, Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,Sa)

M2 (real) ∆ln Money Supply:M2 In 1996 Dollars (Bci)
MB ∆ln Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)
Reserves tot ∆ln Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa)
Reserves nonbor ∆ln Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa)
C&I loans ∆ln Commercial&Industrial Loans Oustanding In 1996 Dollars (Bci)
C&I loans lv Wkly Rp Lg Coml Banks:Net Change Coml&Indus Loans(Bil$,Saar)
Cons credit ∆ln Consumer Credit Outstanding-Nonrevolving(G19)
Inst cred/PI ∆lv Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB)

Price indexes
PPI: fin gds ∆ln Producer Price Index: Finished Goods (82=100,Sa)
PPI: cons gds ∆ln Producer Price Index: Finished Consumer Goods (82=100,Sa)
PPI: int matls ∆ln Producer Price Index:I ntermed Mat.Supplies & Components(82=100,Sa)
PPI: crude matls ∆ln Producer Price Index: Crude Materials (82=100,Sa)
Com: spot price ∆ln Spot market price index: bls&crb: all commodities(1967=100)
NAPM com price lv Napm Commodity Prices Index (Percent)
CPI-U: all ∆ln Cpi-U: All Items (82-84=100,Sa)
CPI-U: apparel ∆ln Cpi-U: Apparel&Upkeep (82-84=100,Sa)
CPI-U: transp ∆ln Cpi-U: Transportation (82-84=100,Sa)
CPI-U: medical ∆ln Cpi-U: Medical Care (82-84=100,Sa)
CPI-U: comm. ∆ln Cpi-U: Commodities (82-84=100,Sa)
CPI-U: dbles ∆ln Cpi-U: Durables (82-84=100,Sa)
CPI-U: services ∆ln Cpi-U: Services (82-84=100,Sa)
CPI-U: ex food ∆ln Cpi-U: All Items Less Food (82-84=100,Sa)
CPI-U: ex shelter ∆ln Cpi-U: All Items Less Shelter (82-84=100,Sa)
CPI-U: ex med ∆ln Cpi-U: All Items Less Midical Care (82-84=100,Sa)
PCE defl ∆ln Pce, Impl Pr Defl:Pce (1987=100)
PCE defl: dlbes ∆ln Pce, Impl Pr Defl:Pce; Durables (1987=100)
PCE defl: nondble ∆ln Pce, Impl Pr Defl:Pce; Nondurables (1996=100)
PCE defl: services ∆ln Pce, Impl Pr Defl:Pce; Services (1987=100)

Average hourly earnings
AHE: goods ∆ln Avg Hourly Earnings of Workers On Private Nonfarm Payrolls - Goods-Producing
AHE: const ∆ln Avg Hourly Earnings of Workers On Private Nonfarm Payrolls Construction
AHE: mfg ∆ln Avg Hourly Earnings of Workers On Private Nonfarm Payrolls - Manufacturing

Miscellaneous
Consumer expect ∆lv U. Of Mich. Index Of Consumer Expectations(Bcd-83)
Note: This table lists the individual macro series used in factor extraction. The column headed ‘Transf.’ indicates
the transformation applied to original series: lv = no transformation (levels are used), ln = logarithm of the level,
∆lv = first differences of the level, and ∆ln = first differences of the log level.
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Appendix C Alternative levels of risk aversion

Table C.1: Performance of active trading strategies for RRA=2

µ σ SR ∆100 ∆50 ∆0 ∆BM I ∆BM II ∆BM III

Panel A: January 1980 - December 2005

w∗
t+1 ∈ [−1, 2]

SFM 17.40 21.41 0.55 147 371 714 447 1146 228
TRS I 16.80 19.19 0.59 187 405 747 480 1178 262
TRS II 15.60 19.26 0.52 49 273 615 348 1046 129
TRS III 16.20 20.06 0.52 88 312 655 387 1086 169
BM I 12.96 21.41 0.35 −300 −75 268
BM II 6.48 22.55 0.03 −1000 −775 −432
BM III 15.84 23.04 0.45 −81 144 487

w∗
t+1 ∈ [0, 1]

SFM 12.36 11.22 0.59 −16 207 549 151 435 100
TRS I 12.48 8.80 0.80 46 269 610 213 497 162
TRS II 11.76 9.01 0.69 −37 186 527 130 414 79
TRS III 11.52 9.84 0.59 −78 145 486 89 373 38
BM I 10.92 11.15 0.48 −167 56 398
BM II 8.04 11.33 0.21 −451 −228 113
BM III 11.88 13.16 0.48 −116 107 449

Panel B: January 1980 - December 1992

w∗
t+1 ∈ [−1, 2]

SFM 21.48 23.69 0.59 210 441 805 −124 868 364
TRS I 19.56 21.03 0.55 144 374 738 −190 801 298
TRS II 19.08 20.89 0.55 101 332 695 −232 758 255
TRS III 21.12 22.38 0.59 243 473 838 −91 901 397
BM I 22.56 23.52 0.62 334 565 929
BM II 12.96 24.04 0.21 −659 −428 −63
BM III 17.28 22.66 0.42 −154 76 441

w∗
t+1 ∈ [0, 1]

SFM 15.12 12.75 0.59 −11 218 580 10 259 154
TRS I 14.88 9.25 0.80 48 277 638 68 317 213
TRS II 14.40 9.35 0.73 −2 227 588 18 267 163
TRS III 15.12 11.99 0.62 2 231 593 23 272 167
BM I 15.00 12.82 0.59 −20 209 571
BM II 12.24 11.78 0.38 −270 −41 321
BM III 13.68 13.27 0.45 −165 64 426

Panel C: January 1993 - December 2005
w∗

t+1 ∈ [−1, 2]

SFM 13.44 18.78 0.52 82 300 622 1004 1418 93
TRS I 14.04 17.11 0.62 214 432 754 1136 1549 226
TRS II 12.00 17.39 0.48 −7 211 533 915 1329 5
TRS III 12.72 18.46 0.48 24 242 564 947 1360 36
BM I 3.24 18.67 0.00 −923 −704 −383
BM II 0.00 20.78 − −1338 −1120 −797
BM III 14.40 23.38 0.45 −12 207 530

w∗
t+1 ∈ [0, 1]

SFM 9.60 9.39 0.66 −22 195 516 291 610 46
TRS I 10.08 8.24 0.80 43 260 581 356 675 112
TRS II 9.00 8.56 0.62 −72 145 465 240 559 4
TRS III 9.00 9.53 0.55 −95 122 442 217 536 −27
BM I 6.72 9.04 0.35 −313 −96 225
BM II 3.84 10.77 0.03 −632 −415 −94
BM III 10.08 13.09 0.48 −69 149 470

Note: The table displays performance measures for the active mean-variance investment strategies
based on monthly excess return and volatility predictions for the period January 1980 - December
1992 with relative risk aversion γ in (16) set equal to 2. Results are shown for medium transaction
costs (0.1%). See Table 3 for further details.
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Table C.2: Performance of active trading strategies for RRA=10

µ σ SR ∆100 ∆50 ∆0 ∆BM I ∆BM II ∆BM III

Panel A: January 1980 - December 2005

w∗
t+1 ∈ [−1, 2]

SFM 10.44 11.85 0.42 168 −382 −280 68 458 −282
TRS I 11.40 13.20 0.45 79 −481 −377 −23 373 −379
TRS II 10.56 12.78 0.38 61 −495 −392 −40 354 −394
TRS III 11.76 11.99 0.52 287 −264 −162 187 577 −164
BM I 9.24 11.43 0.31 99 −448 −346
BM II 7.56 13.13 0.14 −294 −853 −750
BM III 10.08 9.08 0.48 437 −97 2

w∗
t+1 ∈ [0, 1]

SFM 9.84 7.10 0.59 582 56 153 105 243 79
TRS I 9.72 6.65 0.62 603 79 176 127 266 101
TRS II 9.48 6.58 0.59 588 64 160 112 251 86
TRS III 9.96 6.86 0.62 612 87 184 136 274 110
BM I 9.00 7.41 0.45 478 −49 48
BM II 7.80 7.59 0.28 339 −188 −91
BM III 9.36 7.52 0.48 505 −23 75

Panel B: January 1980 - December 1992

w∗
t+1 ∈ [−1, 2]

SFM 14.28 14.27 0.45 92 −581 −487 −154 498 −586
TRS I 13.92 16.28 0.38 −293 −990 −892 −547 126 −995
TRS II 13.44 15.76 0.38 −243 −934 −837 −495 172 −939
TRS III 14.52 13.99 0.48 163 −507 −412 −81 568 −511
BM I 15.12 13.89 0.55 244 −425 −331
BM II 11.16 15.45 0.24 −414 −1101 −1004
BM III 11.40 7.27 0.52 627 5 92

w∗
t+1 ∈ [0, 1]

SFM 12.60 8.28 0.59 668 41 129 −18 170 −4
TRS I 11.64 7.69 0.52 617 −7 81 −66 121 −51
TRS II 11.52 7.59 0.52 611 −13 74 −72 115 −58
TRS III 12.12 7.79 0.59 658 33 121 −26 162 −11
BM I 12.96 8.42 0.62 687 59 147
BM II 11.04 8.31 0.38 498 −129 −41
BM III 11.40 6.69 0.55 664 44 131

Panel C: January 1993 - December 2005
w∗

t+1 ∈ [−1, 2]

SFM 6.60 8.63 0.35 238 −200 −92 272 420 −7
TRS I 8.76 9.08 0.59 420 −19 89 454 603 174
TRS II 7.80 8.80 0.48 340 −98 11 375 524 95
TRS III 9.00 9.49 0.55 400 −41 68 434 584 153
BM I 3.24 7.93 − −34 −469 −362
BM II 3.84 10.18 0.03 −185 −629 −519
BM III 8.64 10.57 0.48 −185 −629 −519

w∗
t+1 ∈ [0, 1]

SFM 6.96 5.54 0.59 498 69 175 220 313 156
TRS I 7.80 5.40 0.76 588 159 265 311 403 247
TRS II 7.44 5.27 0.73 564 136 242 287 380 223
TRS III 7.68 5.72 0.73 566 137 243 289 381 224
BM I 5.04 6.03 0.24 278 −152 −46
BM II 4.44 6.62 0.14 186 −246 −139
BM III 7.32 8.24 0.45 347 −89 19

Note: The table displays performance measures for the active mean-variance investment strategies
based on monthly excess return and volatility predictions for the period January 1980 - December
1992 with relative risk aversion γ in (16) set equal to 10. Results are shown for medium transaction
costs (0.1%). See Table 3 for further details.
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Tables and figures

Table 1: Market timing and volatility timing

SFM TRS I TRS II TRS III BM I BM II BM III

Panel A: Market timing

Jan 1980 - Dec 2005 0.625 0.587 0.574 0.596 0.580 0.526 0.592
Jan 1980 - Dec 1992 0.622 0.558 0.558 0.590 0.628 0.532 0.577
Jan 1993 - Dec 2005 0.628 0.615 0.590 0.603 0.532 0.519 0.609

Panel B: Volatility timing

Jan 1980 - Dec 2005 0.721 0.724 0.728 0.728 0.712 0.718 0.731
Jan 1980 - Dec 1992 0.622 0.635 0.641 0.615 0.628 0.647 0.628
Jan 1993 - Dec 2005 0.821 0.814 0.814 0.840 0.795 0.788 0.833

Panel C: Joint market timing and volatility timing

Jan 1980 - Dec 2005 0.455 0.429 0.420 0.446 0.407 0.385 0.442
Jan 1980 - Dec 1992 0.397 0.346 0.359 0.391 0.397 0.346 0.359
Jan 1993 - Dec 2005 0.513 0.513 0.481 0.500 0.417 0.423 0.526

Note: Panel A (market timing) shows hit ratios for the sign of the monthly excess stock return.
Panel B (volatility timing) shows hit ratios for the sign of monthly volatility relative to the median
volatility level during the 10-year rolling window that is used for model specification and estimation.
Panel C (joint market timing and volatility timing) shows hit ratios for the signs of the monthly
excess stock return and volatility. SFM denotes the ‘standard’ factor-augmented predictive regres-
sions where factors are constructed using all available macroeconomic variables. TRS I and TRS II
stand for the factor-augmented predictive regressions where factors are constructed after employing
hard thresholding rules with thresholds |t| = 1.28 and 1.04, respectively. TRS III stands for the
factor-augmented predictive regression where the factors are constructed using the first 60 predic-
tors included in the soft thresholding procedure. BM I denotes the benchmark model that uses
only financial variables zt, BM II denotes the model that uses the three individual macroeconomic
predictors with the highest t statistics in the regression (4). BM III denotes the benchmark model
where the historical average is used as the excess return forecast and a random walk forecast is used
for volatility.
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Table 2: Tests for market timing and volatility timing

SFM TRS I TRS II TRS III BM I BM II BM III

Panel A: Market timing

PT
Jan 1980 - Dec 2005 3.46∗∗∗ 2.73∗∗∗ 2.14∗∗ 2.66∗∗∗ 2.00∗∗ 0.63 0.12
Jan 1980 - Dec 1992 2.50∗∗∗ 1.62∗ 1.49∗ 1.86∗∗ 2.73∗∗∗ 0.91 0.05
Jan 1993 - Dec 2005 2.38∗∗∗ 2.24∗∗ 1.50∗ 1.89∗∗ 0.11 −0.08 NA

BGJ-HAC
Jan 1980 - Dec 2005 3.12∗∗∗ 2.84∗∗∗ 2.08∗∗ 2.70∗∗∗ 1.82∗∗ 0.62 0.10
Jan 1980 - Dec 1992 2.47∗∗∗ 1.74∗∗ 1.55∗ 1.94∗∗ 2.42∗∗∗ 0.88 0.00
Jan 1993 - Dec 2005 2.05∗∗ 2.17∗∗ 1.30∗ 1.84∗∗ 0.10 0.10 NA

BH-HAC
Jan 1980 - Dec 2005 2.60∗∗∗ 2.40∗∗∗ 2.24∗∗ 3.24∗∗∗ 2.02∗∗ 1.70∗∗ −0.81
Jan 1980 - Dec 1992 2.76∗∗∗ 2.27∗∗ 2.05∗∗ 2.88∗∗∗ 3.07∗∗∗ 1.99∗∗ −0.56
Jan 1993 - Dec 2005 0.60 0.95 1.00 1.47∗ −0.76 0.12 NA

Panel B: Volatility timing

PT
Jan 1980 - Dec 2005 8.11∗∗∗ 8.16∗∗∗ 8.32∗∗∗ 8.32∗∗∗ 7.80∗∗∗ 7.98∗∗∗ 8.17∗∗∗

Jan 1980 - Dec 1992 3.40∗∗∗ 3.71∗∗∗ 3.98∗∗∗ 3.25∗∗∗ 3.54∗∗∗ 3.95∗∗∗ 3.19∗∗∗

Jan 1993 - Dec 2005 8.11∗∗∗ 7.83∗∗∗ 7.91∗∗∗ 8.56∗∗∗ 7.48∗∗∗ 7.29∗∗∗ 8.34∗∗∗

BGJ-HAC
Jan 1980 - Dec 2005 4.65∗∗∗ 4.67∗∗∗ 4.70∗∗∗ 4.65∗∗∗ 4.48∗∗∗ 4.67∗∗∗ 4.79∗∗∗

Jan 1980 - Dec 1992 2.53∗∗∗ 2.72∗∗∗ 2.82∗∗∗ 2.39∗∗∗ 2.87∗∗∗ 2.87∗∗∗ 2.24∗∗

Jan 1993 - Dec 2005 4.17∗∗∗ 4.15∗∗∗ 4.10∗∗∗ 4.33∗∗∗ 3.94∗∗∗ 3.95∗∗∗ 4.61∗∗∗

BH-HAC
Jan 1980 - Dec 2005 3.47∗∗∗ 3.22∗∗∗ 3.27∗∗∗ 3.38∗∗∗ 4.13∗∗∗ 3.07∗∗∗ 2.34∗∗∗

Jan 1980 - Dec 1992 1.69∗∗ 1.59∗ 1.50∗ 1.56∗ 1.71∗∗ 1.62∗ 4.80∗∗∗

Jan 1993 - Dec 2005 5.64∗∗∗ 5.26∗∗∗ 5.48∗∗∗ 5.69∗∗∗ 4.60∗∗∗ 4.62∗∗∗ 11.84∗∗∗

Panel C: Joint market and volatility timing

HM
Jan 1980 - Dec 2005 81.91∗∗∗ 75.75∗∗∗ 76.97∗∗∗ 81.36∗∗∗ 70.46∗∗∗ 66.53∗∗∗ 84.43∗∗∗

Jan 1980 - Dec 1992 27.08∗∗∗ 20.75∗∗ 24.00∗∗∗ 27.78∗∗∗ 37.71∗∗∗ 22.87∗∗∗ 28.20∗∗∗

Jan 1993 - Dec 2005 75.43∗∗∗ 70.36∗∗∗ 68.19∗∗∗ 77.75∗∗∗ 60.61∗∗∗ 62.45∗∗∗ NA

Trace CC
Jan 1980 - Dec 2005 30.28∗∗∗ 26.64∗∗∗ 26.77∗∗∗ 27.63∗∗∗ 25.48∗∗∗ 23.05∗∗∗ 33.77∗∗∗

Jan 1980 - Dec 1992 18.04∗∗ 11.31 14.09 22.74∗∗∗ 21.77∗∗∗ 11.72 NA
Jan 1993 - Dec 2005 21.16∗∗ 22.06∗∗∗ 19.16∗∗ 19.82∗∗ 17.32∗∗ 20.26∗∗ NA

Note: PT is the test statistic for market (volatility) timing ability as defined in (6). BGJ-HAC is the
HAC t-statistic of the slope coefficient in (7). BH-HAC is the HAC t-statistic of the slope coefficient in
(11). HM is the generalized Henriksson-Merton statistic for joint market and volatility timing in (8).
The Trace CC statistic of Pesaran and Timmermann (2009) uses the sum of canonical correlations
for testing market and volatility timing jointly. NA indicates that the test could not be computed. *,
**, *** indicate significance at the 10%, 5% and 1% level, respectively. Model abbreviations are as in
Table 1.
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Table 3: Performance of active trading strategies: Jan 1980 - Dec 2005, RRA=6

µ σ SR ∆100 ∆50 ∆0 ∆BM I ∆BM II ∆BM III

Passive Strategies

I. 100% Market 13.56 15.10 0.52
II. 50% Market 9.60 7.55 0.52
III. 0% Market 5.64 0.90 −
Active Strategies

Panel A: No transaction costs
w∗

t+1 ∈ [−1, 2]

SFM 13.68 14.79 0.55 41 −109 120 200 642 −72
TRS I 13.92 15.38 0.55 12 −138 91 171 615 −101
TRS II 13.32 15.00 0.52 −15 −164 65 145 587 −127
TRS III 14.88 14.48 0.62 191 41 270 349 791 78
BM I 11.64 14.65 0.42 −159 −308 −80
BM II 8.76 16.32 0.21 −606 −757 −526
BM III 13.08 13.30 0.55 112 −37 190

w∗
t+1 ∈ [0, 1]

SFM 11.52 8.69 0.69 280 134 358 119 314 136
TRS I 11.16 7.38 0.76 311 165 388 149 344 167
TRS II 10.92 7.48 0.69 277 132 354 116 311 133
TRS III 11.40 8.31 0.69 287 141 364 125 320 142
BM I 10.44 8.83 0.55 162 16 239
BM II 8.64 9.18 0.35 −33 −180 44
BM III 10.92 9.98 0.52 145 −1 223

Panel B: Medium transaction costs (0.1%)

w∗
t+1 ∈ [−1, 2]

SFM 12.48 14.79 0.45 −81 −231 −2 182 673 −94
TRS I 12.72 15.38 0.45 −108 −258 −28 156 649 −121
TRS II 12.12 14.96 0.45 −133 −282 −53 131 622 −145
TRS III 13.56 14.45 0.55 63 −86 142 326 816 50
BM I 10.56 14.69 0.35 −263 −413 −184
BM II 7.20 16.35 0.10 −761 −911 −681
BM III 12.12 13.30 0.48 13 −136 91

w∗
t+1 ∈ [0, 1]

SFM 11.04 8.69 0.62 232 86 310 109 325 138
TRS I 10.68 7.34 0.69 265 119 342 142 358 170
TRS II 10.44 7.48 0.66 232 86 309 109 324 137
TRS III 10.92 8.31 0.62 238 92 315 114 330 143
BM I 10.08 8.83 0.48 124 −22 201
BM II 8.04 9.18 0.28 −93 −239 −16
BM III 10.44 9.98 0.48 95 −51 173

Panel C: High transaction costs (0.3%)

w∗
t+1 ∈ [−1, 2]

SFM 10.08 14.86 0.31 −327 −477 −248 147 739 −138
Trsy I 10.32 15.42 0.31 −351 −501 −272 124 717 −162
TRS II 9.72 15.00 0.28 −372 −522 −293 102 694 −183
TRS III 9.24 14.72 0.24 −395 −545 −316 79 670 −7
BM I 8.52 14.72 0.21 −474 −623 −395
BM II 4.20 16.45 − −1075 −1226 −995
BM III 10.08 13.34 0.35 −188 −336 −109

w∗
t+1 ∈ [0, 1]

SFM 10.08 8.73 0.52 136 −10 213 89 349 178
TRS I 9.84 7.38 0.55 173 27 250 126 385 141
TRS II 9.48 7.48 0.52 140 −5 217 93 352 145
TRS III 9.96 8.35 0.52 139 −7 216 92 352 144
BM I 9.36 8.87 0.42 47 −99 124
BM II 6.96 9.25 0.14 −213 −360 −136
BM III 9.48 9.98 0.38 −5 −152 −73

Note: The table displays performance measures for the active mean-variance investment strategies based
on monthly excess return and volatility predictions for the period January 1980 - December 2005. Columns
headed µ and σ contain the annualized mean and standard deviation of the portfolio returns (in percent).
SR denotes the Sharpe ratio. Columns headed ∆ contain performance fees (in annualized basis points) for
switching from the strategy indicated by the subscript to the strategy indicated by the corresponding row.
The subscript x with x =100, 50, and 0 refer to the static strategies with x% of wealth invested in stocks.
Model abbreviations are as in Table 1.

52



Table 4: Mean and standard deviation of portfolio weights

SFM TRS I TRS II TRS III BM I BM II BM III

Panel A: w∗
t+1 ∈ [−1, 2] Mean

Jan 1980 - Dec 2005 0.50 0.32 0.34 0.46 0.51 0.33 0.90
Jan 1980 - Dec 1992 0.42 0.08 0.13 0.34 0.46 0.22 0.69
Jan 1993 - Dec 2005 0.58 0.56 0.56 0.59 0.56 0.44 1.11

Standard Deviation
Jan 1980 - Dec 2005 0.99 1.12 1.10 1.04 0.99 1.14 0.68
Jan 1980 - Dec 1992 0.98 1.15 1.13 0.99 0.96 1.21 0.62
Jan 1993 - Dec 2005 1.00 1.03 1.02 1.07 1.01 1.05 0.67

Panel B: w∗
t+1 ∈ [0, 1] Mean

Jan 1980 - Dec 2005 0.47 0.39 0.41 0.45 0.47 0.43 0.66
Jan 1980 - Dec 1992 0.45 0.33 0.35 0.41 0.46 0.41 0.41
Jan 1993 - Dec 2005 0.49 0.46 0.48 0.50 0.47 0.46 0.50

Standard Deviation
Jan 1980 - Dec 2005 0.44 0.44 0.44 0.44 0.45 0.45 0.35
Jan 1980 - Dec 1992 0.43 0.43 0.43 0.43 0.44 0.46 0.43
Jan 1993 - Dec 2005 0.44 0.44 0.45 0.46 0.45 0.44 0.45

Note: The table displays means and standard deviations of the portfolio weight for stocks in the
active mean-variance investment strategies based on monthly predictions of excess returns and
volatility. Model abbreviations are as in Table 1.

53



Table 5: Performance of active trading strategies: Jan 1980 - Dec 1992, RRA=6

µ σ SR ∆100 ∆50 ∆0 ∆BM I ∆BM II ∆BM III

Passive Strategies

I. 100% Market 16.20 15.93 0.52
II. 50% Market 11.88 7.93 0.52
III. 0% Market 7.68 0.83 −
Active Strategies

Panel A: No transaction costs
w∗

t+1 ∈ [−1, 2]

SFM 17.40 17.01 0.59 14 −182 57 −176 602 −239
TRS I 16.32 18.19 0.48 −246 −444 −203 −437 347 −501
TRS II 15.84 17.60 0.45 −215 −412 −172 −405 376 −467
TRS III 17.16 16.28 0.59 65 −130 107 −124 651 −187
BM I 18.84 16.66 0.66 189 −6 232
BM II 13.20 18.57 0.31 −594 −792 −551
BM III 14.76 11.54 0.62 246 55 288

w∗
t+1 ∈ [0, 1]

SFM 14.64 9.94 0.69 348 158 389 −22 209 152
TRS I 13.08 8.24 0.66 290 102 332 −77 152 95
TRS II 12.84 8.28 0.62 268 79 309 −100 130 73
TRS III 14.16 9.32 0.69 341 152 382 −28 202 145
BM I 15.00 10.12 0.73 370 180 411
BM II 12.48 9.77 0.48 139 −50 180
BM III 12.84 9.42 0.55 196 7 237

Panel B: Medium transaction costs (0.1%)

w∗
t+1 ∈ [−1, 2]

SFM 16.20 17.01 0.48 −112 −308 −69 −165 614 −271
TRS I 15.00 18.19 0.42 −373 −571 −330 −427 358 −534
TRS II 14.64 17.56 0.38 −332 −528 −289 −385 397 −492
TRS III 15.96 16.32 0.52 −63 −258 −20 −116 660 −221
BM I 17.52 16.70 0.59 53 −142 96
BM II 11.88 18.57 0.21 −733 −931 −690
BM III 13.80 11.50 0.52 155 −36 197

w∗
t+1 ∈ [0, 1]

SFM 14.16 9.94 0.66 297 108 339 −18 209 151
TRS I 12.60 8.24 0.59 244 55 285 −70 156 98
TRS II 12.48 8.24 0.59 224 35 265 −90 136 78
TRS III 13.68 9.35 0.66 288 99 330 −27 200 142
BM I 14.52 10.12 0.66 316 126 357
BM II 12.00 9.77 0.45 88 −101 130
BM III 12.36 9.42 0.48 146 −43 188

Panel C: High transaction costs (0.3%)

w∗
t+1 ∈ [−1, 2]

SFM 13.80 17.11 0.35 −367 −563 −324 −145 641 −337
TRS I 12.48 18.26 0.28 −633 −831 −590 −409 382 −603
TRS II 12.24 17.56 0.28 −570 −767 −527 −347 440 −541
TRS III 13.44 16.39 0.35 −321 −516 −278 −100 683 −292
BM I 14.88 16.80 0.42 −222 −417 −179
BM II 9.12 18.64 0.07 −1017 −1215 −974
BM III 12.00 11.50 0.38 −29 −219 13

w∗
t+1 ∈ [0, 1]

SFM 13.20 10.01 0.55 196 6 237 −12 209 148
TRS I 11.76 8.24 0.48 150 −38 192 −56 164 103
TRS II 11.52 8.28 0.48 135 −53 176 −71 149 88
TRS III 12.72 9.39 0.52 182 −7 223 −25 196 135
BM I 13.44 10.18 0.55 207 18 249
BM II 10.92 9.80 0.35 −14 −203 28
BM III 11.28 9.42 0.38 47 −142 89

Note: The table displays performance measures for the active mean-variance investment strategies based
on monthly excess return and volatility predictions for the period January 1980 - December 1992. See
Table 3 for further details.
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Table 6: Performance of active trading strategies: Jan 1993 - Dec 2005, RRA=6

µ σ SR ∆100 ∆50 ∆0 ∆BM I ∆BM II ∆BM III

Passive Strategies

I. 100% Market 11.04 14.24 0.52
II. 50% Market 7.32 7.14 0.52
III. 0% Market 3.60 0.45 −
Active Strategies

Panel A: No transaction costs
w∗

t+1 ∈ [−1, 2]

SFM 9.96 12.12 0.52 67 −39 180 554 680 87
TRS I 11.64 11.85 0.69 260 155 374 747 873 281
TRS II 10.80 11.78 0.62 178 73 292 665 791 199
TRS III 12.48 12.26 0.73 313 207 427 800 927 140
BM I 4.32 11.95 0.07 −487 −592 −373
BM II 4.32 13.61 0.07 −617 −723 −503
BM III 11.40 14.86 0.52 −21 −127 94

w∗
t+1 ∈ [0, 1]

SFM 8.40 7.14 0.69 215 111 327 253 415 121
TRS I 9.24 6.34 0.90 331 227 443 369 531 237
TRS II 8.88 6.55 0.80 286 183 398 325 486 192
TRS III 8.64 7.07 0.69 234 130 346 272 434 333
BM I 5.88 7.14 0.31 −38 −142 74
BM II 4.92 8.38 0.14 −201 −305 −88
BM III 9.12 10.46 0.52 −201 −9 208

Panel B: Medium transaction costs (0.1%)

w∗
t+1 ∈ [−1, 2]

SFM 8.76 12.09 0.42 −53 −158 61 512 731 76
TRS I 10.56 11.85 0.59 145 39 258 709 928 273
TRS II 9.60 11.78 0.52 56 −49 170 620 840 185
TRS III 11.28 12.26 0.62 182 76 296 746 967 310
BM I 3.48 11.95 0.00 −565 −670 −451
BM II 2.64 13.65 − −790 −896 −675
BM III 10.32 14.86 0.45 −130 −237 −15

w∗
t+1 ∈ [0, 1]

SFM 7.92 7.10 0.62 168 64 280 231 438 125
TRS I 8.76 6.30 0.83 284 181 396 347 553 241
TRS II 8.40 6.55 0.73 238 134 350 301 507 195
TRS III 8.16 7.03 0.62 187 83 299 250 456 144
BM I 5.64 7.14 0.28 −63 −167 49
BM II 4.20 8.42 0.07 −270 −374 −158
BM III 8.52 10.46 0.48 43 −61 157

Panel C: High transaction costs (0.3%)

w∗
t+1 ∈ [−1, 2]

SFM 6.36 12.09 0.21 −295 −400 −181 427 836 52
TRS I 8.16 11.85 0.38 −89 −194 25 632 1040 257
TRS II 7.20 11.81 0.31 −191 −296 −77 530 938 156
TRS III 8.64 12.33 0.42 −84 −189 30 638 1047 263
BM I 1.92 11.99 − −721 −827 −608
BM II 0.72 13.79 − −1138 −1244 −1023
BM III 8.16 14.93 0.31 −351 −458 −236

w∗
t+1 ∈ [0, 1]

SFM 6.96 7.10 0.48 73 −31 185 186 483 134
TRS I 7.80 6.30 0.66 190 86 301 302 599 250
TRS II 7.44 6.55 0.59 140 37 252 253 550 201
TRS III 7.20 7.03 0.52 92 −12 204 205 502 153
BM I 5.16 7.10 0.21 −113 −217 −1
BM II 2.88 8.49 − −411 −515 −299
BM III 7.56 10.50 0.38 −61 −166 52

Note: The table displays performance measures for the active mean-variance investment strategies based on
monthly excess return and volatility predictions for the period January 1993 - December 2005. See Table 3
for further details.
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Table 7: Performance of active trading strategies based on excess return
forecasts

µ σ SR ∆100 ∆50 ∆0 ∆BM I ∆BM II ∆BM III

Panel A: January 1980 - December 2005

w∗
t+1 ∈ [−1, 2]

SFM 14.28 18.05 0.48 −252 −405 −172 353 1191 −45
TRS I 13.56 17.67 0.45 −271 −423 −191 332 1169 −64
TRS II 13.08 17.60 0.42 −310 −462 −230 293 1129 −103
TRS III 14.28 17.60 0.48 −200 −352 −120 403 1239 7
BM I 10.80 18.15 0.28 −605 −758 −525
BM II 4.92 20.30 − −1464 −1619 −1382
BM III 12.24 15.80 0.42 −205 −355 −125

w∗
t+1 ∈ [0, 1]

SFM 12.00 10.18 0.62 232 86 310 159 516 231
TRS I 11.52 8.49 0.69 287 141 364 213 568 286
TRS II 10.92 8.38 0.62 235 90 313 162 517 235
TRS III 11.52 9.80 0.59 245 98 323 403 1239 207
BM I 10.44 10.25 0.45 74 −73 151
BM II 7.32 10.95 0.14 −284 −431 −206
BM III 10.80 11.81 0.45 1 −147 79

Panel B: January 1980 - December 1992

w∗
t+1 ∈ [−1, 2]

SFM 18.84 19.85 0.55 −204 −404 −160 −131 1044 −198
TRS I 16.68 19.71 0.45 −397 −596 −353 −324 850 −391
TRS II 16.68 19.43 0.45 −355 −554 −311 −282 890 −349
TRS III 17.16 18.71 0.52 −217 −415 −174 −145 1021 −212
BM I 18.96 18.98 0.59 −73 −271 −29
BM II 10.44 21.44 0.14 −1263 −1465 −1218
BM III 11.52 10.57 0.38 −5 −195 36

w∗
t+1 ∈ [0, 1]

SFM 14.76 11.71 0.62 239 48 281 −3 291 222
TRS I 13.92 8.90 0.69 341 152 382 101 392 325
TRS II 13.20 8.73 0.62 279 90 320 39 330 263
TRS III 14.40 10.81 0.62 259 69 300 18 310 243
BM I 14.52 11.33 0.59 242 51 283
BM II 11.64 11.40 0.35 −52 −242 −10
BM III 11.64 10.46 0.38 16 −174 58

Panel C: January 1993 - December 2005

w∗
t+1 ∈ [−1, 2]

SFM 9.72 15.97 0.38 −301 −408 −185 803 1331 100
TRS I 10.56 15.35 0.45 −153 −260 −37 948 1474 247
TRS II 9.48 15.42 0.38 −269 −376 −154 831 1358 130
TRS III 11.28 16.39 0.48 −186 −294 −70 920 1449 173
BM I 2.64 16.97 − −1110 −1218 −993
BM II −0.60 18.91 − −1659 −1768 −1541
BM III 12.96 19.68 0.48 −410 −519 −291

w∗
t+1 ∈ [0, 1]

SFM 9.12 8.35 0.66 225 121 337 315 732 240
TRS I 9.00 8.00 0.66 232 128 345 322 739 248
TRS II 8.64 7.97 0.62 192 88 304 282 698 207
TRS III 8.64 8.63 0.59 157 53 270 248 665 215
BM I 6.24 8.87 0.31 −90 −194 23
BM II 2.88 10.29 − −510 −614 −397
BM III 9.84 13.03 0.48 −16 −122 99

Note: The table displays performance measures for the active mean-variance investment strategies
based on monthly excess return predictions, with the volatility fixed at the median level during the
10-year rolling window that is used for model specification and estimation. Results are shown for
medium transaction costs (0.1%) and with RRA=6. See Table 3 for further details.
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Figure 1: Number of factors and their lags used in each period
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Note: The graphs show the number of factors (solid line) and the number of lags (shaded area)
included in the predictive regression models for excess returns (left) and volatility (right), for the
moving window ending at the date on the horizontal axis. The selection of the number of factors
and their lags is made with BIC, where at least one and at most six factors are included and up
to two lags of each factor. Model abbreviations are as in Table 1.
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Figure 2: Number of factors and their lags used in each period

0

20

40

60

80

100

0

20

40

60

80

100

1980 1985 1990 1995 2000 2005

TRS I TRS II

0

20

40

60

80

100

0

20

40

60

80

100

1980 1985 1990 1995 2000 2005

TRS I TRS II

Note: The graphs show the number of macroeconomic variables that are selected using the hard
thresholding approach with significance levels 0.10 (TRS I) and 0.15 (TRS II) for constructing
factors that enter the predictive regressions for excess returns (top panel) and for volatility
(bottom panel).
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Figure 3: Hit ratio for excess returns during five-year moving windows
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Note: The solid line is the hit ratio for the sign of the monthly excess stock return, during the
five-year moving window ending at the date displayed on the horizontal axis. The shaded area
indicates the expected hit ratio under the assumption of independence between the actual and
predicted signs. Model abbreviations are as in Table 1.
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Figure 4: Out-of-sample R2 of factor-augmented predictive regression models for
excess returns
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Note: The graph shows the time path of R2
OoS, defined in (12), that is, one minus the ratio of the

cumulative squared prediction errors for the factor-augmented regression relative to the
cumulative squared prediction errors for the prevailing historical mean excess return. Model
abbreviations are as in Table 1.
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Figure 5: Hit ratio for volatility during five-year moving windows
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Note: The solid line is the hit ratio for the sign of the monthly volatility (relative to the median
volatility level during the 10-year rolling window that is used for model specification and
estimation), during the five-year moving window ending at the date displayed on the horizontal
axis. The shaded area indicates the expected hit ratio under the assumption of independence
between the actual and predicted signs. Model abbreviations are as in Table 1.
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Figure 6: Economic performance of factor-augmented predictive regression models
during five-year moving windows
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Note: Performance fees ∆ (in basis points per annum) computed according to (17) for five-year
moving windows ending at the date displayed on the horizontal axis. The solid line, the dotted
line and the dashed lines represent the performance fees of the indicated factor-augmented
predictive regression relative to the first, second, and third benchmark models. Model
abbreviations are as in Table 1.
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