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Abstract

Neither the Dif(ference) moment conditions, see Arellano and Bond (1991),

nor the Lev(el) moment conditions, see Arellano and Bover (1995) and Blundell

and Bond (1998), identify the parameters of linear dynamic panel data models for

all data generating processes for the initial observations that accord with them

when the data is persistent. The combined Dif-Lev (Sys) moment conditions

do not always identify the parameters either when there are three time series

observations but do so for larger numbers of time series observations. Thus the

Sys moment conditions always identify the parameters when there are more than

three time series observations. To determine the optimal GMM procedure for

analyzing the parameters in linear dynamic panel data models, we construct

the power envelope and find that the KLM statistic from Kleibergen (2005)

maximizes the rejection frequency under the worst case alternative hypothesis

whilst always being size correct under the null hypothesis.
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1 Introduction

Many empirical studies employ dynamic panel data methods. These are typically gen-

eralized method of moments (GMM) based and use the moment conditions that result

from either Arellano and Bond (1991), to which we refer as Dif moment conditions, or

Arellano and Bover (1995), to which we refer as Lev moment conditions, or a combina-

tion of these two sets of moment conditions to which we refer as Sys moment conditions,

see also Anderson and Hsiao (1981) and Blundell and Bond (1998). The Dif moment

conditions do not identify the parameters of dynamic panel data models when the data

is persistent which has led to the development of the Lev moment conditions which

are supposed to identify the parameters when the data is persistent. GMM based pro-

cedures based on the Lev moment conditions, however, often still lead to large biases

of estimators and size distortions of test statistics when the data is persistent, see e.g.

Bond and Windmeijer (2005) and Bond et. al. (2005).

We show that the Lev moment conditions do not identify the parameters of dynamic

panel data models when the data is persistent for a range of different data generating

processes for the initial observations. This explains the unsatisfactory performance of

estimators and test statistics in such instances. Thus both the Dif and Lev moment

conditions do not identify the parameters of the dynamic panel data model when the

data is persistent because identification has to hold for all data generating processes

that accord with the moment conditions. The Sys moment conditions are a combi-

nation of the Dif and Lev moment conditions so we expect that they do not identify

the parameters either. This, however, only holds when there are three time series ob-

servations. We show that the Sys moment conditions identify the parameters of the

dynamic panel data model when there are more than three time series observations for

all data generating processes for the initial observations that accord with the moment

conditions. The non-identification of the parameters from the Lev moment conditions

when the data is persistent results from the divergence of the initial observations and

therefore also of products of it with other variables. When there are three time series

observations, the number of divergent components equals the number of Sys moment

conditions so we cannot identify the parameters. When there are more than three

moment conditions, the number of such divergent components is less than the number

of Sys moment conditions so we can identify the parameters from those parts of the

Sys moment conditions that do not depend on the divergent components.

To alleviate the biases and size distortions of estimators and test statistics alterna-

tive approximations for the large sample distributions of them in case of persistent data
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alongside corrections of the estimators and test statistics themselves have been pro-

posed. Kruiniger (2009) and Madsen (2003) construct such alternative approximations

of the large sample distributions using an approach similar to the weak instrument

asymptotics employed in Staiger and Stock (1997). To show the non-identification of

the parameters, we use a similar setting with a joint limit sequence where the variance

of the initial observations goes to infinity jointy with the sample size. The resulting

expressions for the large sample distributions of the estimators are similar to those

in Kruiniger (2009) except for when there are more than three time series observa-

tions and we use the Sys moment conditions. We show that the parameters are then

identified which is left unmentioned in Kruiniger (2009).

We often use identification robust GMM statistics, like, for example, the GMM

extension of the Anderson-Rubin (AR) statistic, see Anderson and Rubin (1949) and

Stock and Wright (2000), and the KLM statistic, see Kleibergen (2002,2005), to ana-

lyze the identification issues with the different moment conditions. The large sample

distributions of these statistics are not affected by the identification issues that result

from the initial observations. Hence, we can use them to analyze such issues in a clear

manner since the results that we obtain from them are not blurred by size distortions

etc. that result from the identification problems. The correction of the Wald statistic

proposed in Windmeijer (2004) is another statistic that overcomes size distortions. It

is closely related to the KLM statistic from Kleibergen (2005). Since it uses the two

step estimator and does not incorporate all components of the KLM statistic, the large

sample distribution of Windmeijer’s correction of the Wald statistic is not fully robust

to identification failure whilst the large sample distribution of the KLM statistic is.

We only analyze GMM based procedures. Alongside GMM based procedures, like-

lihood based procedures have been proposed to analyze dynamic panel data, see e.g.

Lancaster (2002), Moreira (2009) and Hsiao et. al. (2002). None of these likelihood

based procedures does, however, identify the parameters when the data is persistent

which we show can be achieved through GMM based procedures when there are more

than three time series observations.

The paper is organized as follows. The second section introduces the linear dynamic

panel data model and the different moment conditions that are used to identify its

parameters. In the third second, we show the non-identification of the parameters that

results from the Dif and Lev moment conditions and the Sys moment conditions with

three time series observations. In the fourth section, we show that the Sys moment

conditions always identify the parameters when there are more than three time series

observations. We also construct the large sample distributions of the estimators and
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statistics for persistent data when there are more than three time series observations.

In the fifth section we construct the power envelope for the statistics when the data is

persistent for different numbers of time series observations. The sixth section concludes.

We use the following notation throughout the paper: PA = A(A0A)−1A0 is a projec-
tion on the columns of the full rank A k× k dimensional matrix A and MA = Ik −PA

is a projection on the space orthogonal to A. Convergence in probability is denoted by

“→
p
” and convergence in distribution by “→

d
”.

2 Moment conditions

We analyze the dynamic panel data model

yit = ci + θyit−1 + uit, i = 1, . . . , N, t = 2, . . . , T,

yi1 = μi + ui1 i = 1, . . . , N,
(1)

with ci = μi(1− θ), T the number of time periods and N the number of cross section

observations. For expository purposes, we analyze the simple dynamic panel data

model in (1) which can be extended with additional lags of yit and/or explanatory

variables. Estimation of the parameter θ by means of least squares leads to a biased

estimator in samples with a finite value of T, see e.g. Nickel (1981). We therefore

estimate it using GMM. We obtain the GMM moment conditions from the conditional

moment assumption:

E[uit|uit−1, . . . , ui1, ci] = 0, t = 1, . . . , T, i = 1, . . . , N, (2)

which implies that for every i :

E[uituit−j] = 0, j = 1, . . . , t− 1; t = 1, . . . , T,
E[uitci] = 0, t = 1, . . . , T.

(3)

Alongside the conditional moment assumption in (2), we do not impose any additional

assumptions on the variances of the disturbances uit and fixed effects ci except for that

they are finite. Under these assumptions, the moments of the T 2 interactions of ∆yit

and yit :

E[∆yityij] j = 1, . . . , T, t = 2, . . . , T (4)

can be used to construct functions which identify the parameter of interest θ. The

covariance between ci and yit−1 leads to inconsistency of the least squares estimator of
θ when T is finite and N gets large so the moments in (4) do not contain any product
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of ci and yit−1, since ∆yit does not depend on ci, as to avoid the origin of this inconsis-

tency. We do not use products of ∆yit to identify θ either since we would need further

assumptions, like, for example, homoscedasticity or initial condition assumptions, to

do so, see e.g. Han and Phillips (2010).

Two different sets of moment conditions, which are functions of the moments in

(4), are commonly used to identify θ :

1. Difference (Dif) moment conditions:

E[yij(∆yit − θ∆yit−1)] = 0 j = 1, . . . , t− 2; t = 3, . . . , T, (5)

as proposed by e.g. Anderson and Hsiao (1981) and Arellano and Bond (1991).

2. Level (Lev) moment conditions:

E[∆yit−1(yit − θyit−1)] = 0 t = 3, . . . , T, (6)

as proposed by Arellano and Bover (1995), see also Blundell and Bond (1998).

These moments can be used separately or jointly to identify θ. If we use the moment

conditions in (5) and (6) jointly, we refer to them as system (Sys) moment conditions,

see Arellano and Bover (1995) and Blundell and Bond (1998).

Without any additional homoscedasticity or initial observation assumptions, the

sample analogs of the moments in (4),

1
N

NX
i=1

∆yityij j = 1, . . . , T, t = 2, . . . , T, (7)

provide the sufficient statistics for θ. Under our assumptions, the Sys moment condi-

tions extract all available information on θ from these sufficient statistics.

The Dif moment conditions do not identify θ when its true value is equal to one

while the Lev moment conditions are supposed to do, see Arellano and Bover (1995) and

Blundell and Bond (1998). It has therefore become customary to use the Sys moment

conditions so θ is identified throughout by the moment conditions. The identification

results in Blundell and Bond (1998) are, however, silent about their sensitivity with

respect to the initial observations.

In Lancaster (2002) and Moreira (2009), the observations are analyzed in deviation

from the initial observations which preserves their autoregressive structure and sets the

initial observations to zero. The transformed observations which are analyzed using
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likelihood based procedures, however, no longer satisfy the Lev moment conditions.

Likelihood based procedures are also used in Hsiao et. al. (2002) but identical to the

likelihood based procedures proposed in Lancaster (2002) and Moreira (2009), they do

not apply to unit values of θ.

3 Initial observations and identification

The Dif and Lev moment conditions that we use to identify θ are semi-parametric

with respect to the fixed effects and initial observations so they identify θ for a variety

of different specifications of them. These specifications, however, still influence the

identification of θ for persistent values of it, i.e. values that are close to one. To

exemplify this, we first consider the simplest setting which has T equal to three.

3.1 Identification when T = 3.

When there are three time series observations, the Dif and Lev moment conditions

read:
Dif: E[yi1(∆yi3 − θ∆yi2)] = 0

Lev: E[∆yi2(yi3 − θyi2)] = 0
(8)

with Jacobians:
Dif: −E[yi1∆yi2]

Lev: −E[yi2∆yi2)].
(9)

The Jacobians in (9) show that for many data generating processes (DGPs) for the

initial observations yi1, the Dif moment condition does not identify θ when its true

value, θ0, is equal to one since E[yi1∆yi2] is then equal to zero1. The Jacobian of the

Lev moment condition is such that

E(yi2∆yi2) = E((ci + θ0yi1 + ui2)ui2)

= E(u2i2)

= σ22 6= 0,
(10)

so the Lev moment conditions seem to identify θ irrespective of the value of θ0, see

Arellano and Bover (1995) and Blundell and Bond (1997). There is a caveat though

since for many data generating processes yi1 is not defined when θ0 is equal to one and,

despite that yi1 and ui2 are uncorrelated, we then do not know the value of E(yi1ui2)

1An example of a DGP for yi1 for which the Dif Jacobian condition does hold at θ0 = 1 is
yi1 ∼ N(μ, σ2

1−θ20 ) (covariance stationarity) so E(yi1∆yi2) =
σ2

2 .
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which is used in the construction of the Jacobian in (10). To ascertain the identification

of θ by the Lev moment conditions when θ0 is equal to one, we therefore consider a joint

limit process where both θ0 converges to one and the sample size goes to infinity. In

order to do so, we first make an assumption about the mean of the initial observations.

Assumption 1. When θ0 goes to one, the initial observations are such that

limθ0→1(1− θ0)yi1 = ci. (11)

Assumption 1 implies that the constant term ci in the autoregressive model in (1)

is associated with the mean of the initial observations μi and that

limθ0→1(1− θ0)ui1 = 0. (12)

It allows both for ci or μi fixed for different values of θ0. If Assumption 1 does not

hold, the Lev moment conditions are not satisfied since

∆yi2 = ci + (θ0 − 1)yi1 + ui2 (13)

so if Assumption 1 does not hold, ∆yi2 depends on ci when θ0 is equal to one and the

Lev moment condition does not hold.

Lev moment condition We analyze the large sample behavior of the Lev sample

moment, 1
N

PN
i=1∆yi2(yi3 − θyi2), and its derivative, − 1

N

PN
i=1 yi2∆yi2, when θ0 con-

verges to one (we rule out explosive values of θ0) for which we just list their elements

that matter for the large sample behavior for some DGPs for the initial observations:

limθ0↑1
1
N

PN
i=1∆yi2(yi3 − θyi2) = (1− θ)

n
1
N

PN
i=1 u

2
i2 + limθ0↑1

1
N

PN
i=1 ui2yi1+

limθ0↑1
1
N

PN
i=1(1− θ0)ui1yi1

o
limθ0↑1

1
N

PN
i=1 yi2∆yi2 =

1
N

PN
i=1 u

2
i2 + limθ0↑1

1
N

PN
i=1 ui2yi1+

limθ0↑1
1
N

PN
i=1(1− θ0)ui1yi1.

(14)

Since ui2 and yi1 are uncorrelated, for some function h(θ0) it holds that

limθ0↑1 h(θ0)
1√
N

PN
i=1 ui2yi1 →

d
ψ2, (15)

with ψ2 a normal random variable with mean zero and variance σ22 =var(ui2) so

h(θ0)
−2 =var(yi1), which explains why 1

N

PN
i=1 ui2yi1 appears in (14). Similarly, if

var(ui1) = σ2

1−θ20 then

limθ0↑1
1
N

PN
i=1(1− θ0)ui1yi1 = limθ0↑1E((1− θ0)u

2
i1) =

σ2

2
, (16)
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with σ2 a non-zero constant.2

The speed with which the sample size goes to infinity compared to the convergence

of h(θ0) to zero determines the behavior of the Jacobian of the Lev moment condition.

For example, when
h(θ0)

√
N →

N→∞, θ0↑1
∞, (17)

it holds that

1
N

PN
i=1 yi2∆yi2 →

p

N→∞, θ0↑1

σ22 + limθ0↑1E((1− θ0)u
2
i1), (18)

while when
h(θ0)

√
N →

N→∞, θ0↑1
0, (19)

the large sample behavior of the Lev moment equation and its Jacobian are character-

ized by
h(θ0)

1√
N

PN
i=1∆yi2(yi3 − θyi2) →

d
N→∞, θ0↑1

(1− θ)ψ2

h(θ0)
1√
N

PN
i=1 yi2∆yi2 →

d
N→∞, θ0↑1

ψ2.
(20)

This shows that θ is not identified if θ0 is equal to one, since ψ2 has mean zero, and the

convergence of the sample size and θ0 accords with (19). Since any assumption about

the convergence rates of the sample size and θ0 is arbitrary, also the identification of

θ by the Lev moment conditions is arbitrary for DGPs for which θ0 is close to one

and h(θ0) is equal to zero when θ0 equals one. Some of the most plausible DGPs for

the initial observations belong to this category. A few examples of these, and their

specifications of h(θ0), are:

DGP 1. yi1 ∼ N( ci
1−θ0 , σ

2
1), σ

2
c =var(ci), h(θ0) = (1− θ0)/σc.

DGP 2. yi1 ∼ N( ci
1−θ0 ,

σ21
1−θ20 ), σ

2
c =var(ci), h(θ0) = (1− θ0)/σc.

DGP 3. yi1 ∼ N(μi,
σ21
1−θ20 ), σ

2
μ =var(μi), ci = μi(1− θ0), h(θ0) =

³p
1− θ20

´
/σ1.

DGP 4. yi1 ∼ N(μi, σ
2
1
1−θ2(g+1)0

1−θ20 ), σ2μ =var(μi), ci = μi(1− θ0), limθ0↑1 h(θ0) =
1
σ1
g−

1
2 .

DGP 5. yi1 ∼ N( ci
1−θ0 , σ

2
1
1−θ2(g+1)0

1−θ20 ), σ2c =var(ci), limθ0↑1 h(θ0) = (1− θ0) /σc.

2We note that this is just the special case of covariance stationarity to which we do not confine
ourselves.
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DGPs 4 and 5 characterize an autoregressive process of order one that has started

g periods in the past while the initial observations that result from DGP 2 and 3 result

from an autoregressive process that has started an infinite number of periods in the

past. DGPs 1 and 3 are also used by Blundell and Bond (1997) while Arellano and

Bover (1995) use DGP 3.

The conditions on h(θ) that result from (19) for DGPs 1-5 are:

DGP 1, 2, 5 : (1− θ0)
√
N →

N→∞, θ0↑1
0 or θ0 = 1− d

N
1
2 (1+�)

DGP 3 : (1− θ20)N →
N→∞, θ0↑1

0 or θ0 = 1− d
N1+�

DGP 4 : N
g

→
N→∞, g→∞

0,

(21)

with d a constant and � some real number larger than zero, so the process should

have been running longer than the sample size in case of DGP 4. Kruiniger (2009)

uses the above specification for DGP 3 with � = 0 and DGP 4 with N/g going to a

constant to construct local to unity asymptotic approximations of the distributions of

two step GMM estimators that use the Dif, Lev and/or Sys moment conditions. We do

not confine ourselves to a specific DGP for the initial observations in order to obtain

results that apply generally. While the (non-) identification conditions for identifying

θ that result from the above data generating processes might be (in)plausible, it is

the arbitrariness of them which is problematic for practical purposes. For example,

the identification condition might hold but it can lead to large size distortions of test

statistics as in case of weak instruments, see Staiger and Stock (1997).

Dif moment condition Because the Dif moment condition does not identify θ when

θ0 is equal to one, except, for example, for the covariance stationary DGP for the initial

observations mentioned previously, the above identification issues that concern the Lev

moment conditions do not in general alter the identification of θ when we use the Dif

moment condition. When (19) holds, the large sample behavior for values of θ0 close

to one for the Dif sample moments and its derivative are such that:

h(θ0)
1√
N

PN
i=1 yi1(∆yi3 − θ∆yi2) →

d
N→∞, θ0↑1

ψ3 − θψ2

−h(θ0) 1√
N

PN
i=1 yi1∆yi2 →

d
N→∞, θ0↑1

−ψ2
(22)

where
limθ0↑1 h(θ0)

1√
N

PN
i=1 ui3yi1 →d ψ3, (23)

9



with ψ3 a normal random variable with mean zero and variance σ
2
3 =var(ui3). Since ψ2

has mean zero, θ remains unidentified when θ0 is equal to one. This also shows that

although a covariance stationary DGP for the initial observations, like DGP 3, seems

to satisfy the Jacobian identification condition, it does not identify θ at θ0 = 1 when

the convergence of the sample size and θ0 is in accordance with (19).

The above implies that θ is not necessarily identified by the Dif and Lev moment

conditions when θ0 is equal to one so it is of interest to analyze if this extends to the

Sys moment conditions which are a combination of the Dif and Lev moment conditions.

Sys moment conditions The Sys sample moments, which we reflect by fN(θ), and

their derivative, which we reflect by qN(θ), read:

fN(θ) =
1
N

PN
i=1

Ã
yi1(∆yi3 − θ∆yi2)

∆yi2(yi3 − θyi2)

!
, qN(θ) = − 1

N

PN
i=1

Ã
yi1∆yi2

∆yi2yi2

!
. (24)

In large samples and when θ0 converges to one according to (19), the behavior of the

Sys sample moments and their derivative is characterized by

limθ0↑1, h(θ0)
√
N→0
√
Nh(θ0)

Ã
fN(θ)

qN(θ)

!
→
d

⎛⎜⎜⎜⎝
−θ 1

1− θ 0

1 0

1 0

⎞⎟⎟⎟⎠
Ã

ψ2
ψ3

!
. (25)

The large sample behavior of the Sys moment conditions in (25) does, since the means

of ψ2 and ψ3 are equal to zero, not identify θ. This shows that also for the Sys moment

conditions the identification of θ is arbitrary for unit values of θ0 when T = 3 since it

depends on an high level assumption that concerns the convergence rates of θ0 and the

sample size.

The non-identification of θ by its moment conditions for specific convergence se-

quences concerning the variance of the initial observations implies that the limit be-

havior of estimators is non-standard. We state this limit behavior for the one and two

step estimators that result for the Dif, Lev and Sys moment conditions when T = 3

in Theorem 1. The two step estimator that results from the Sys moment conditions is

computed using the usual Eicker-White covariance matrix estimator evaluated at the

estimate from the first step, see White (1980). Since the number of Lev and Dif mo-

ment conditions equals the number of elements of θ when T = 3, the GMM estimators

based on these moment conditions do not depend on the covariance matrix estimator.
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Theorem 1. Under Assumption 1, the conditions in (3), finite fourth moments of ci
and uit, i = 1, . . . , N, t = 2, . . . , T and when (19) holds, the large sample behavior of

the one and two step GMM estimators that result from the Dif, Lev and Sys moment

conditions when T = 3 read:

θ̂Dif →
θ0↑1, h(θ0)

√
N→0

d

ψ3
ψ2
= 1 + ψ3−ψ2

ψ2

h(θ0)
−1(θ̂Lev − 1) →

θ0↑1, h(θ0)
√
N→0

d

ψcu,1+ψcu,3
ψ2

θ̂Sys,1step →
θ0↑1, h(θ0)

√
N→0

d

1 + ψ3−ψ2
2ψ2

θ̂Sys,2step →
θ0↑1, h(θ0)

√
N→0

d

1− ψ23−ψ3ψ2
2ψ22

⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 0
1

⎞⎟⎠
⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 1
1

⎞⎟⎠

(26)

with

h(θ0)
2

"
1
N

PN
i=1

Ã
yi1

Ã
∆yi2

∆yi3

!
−
Ã

yi1∆yi2

yi1∆yi3

!!Ã
yi1

Ã
∆yi2

∆yi3

!
−
Ã

yi1∆yi2

yi1∆yi3

!!0#
→

θ0↑1, h(θ0)
√
N→0

d

Vy1∆y,y1∆y

(27)

and yi1∆yi2 =
1
N

PN
i=1 yi1∆yi2, yi1∆yi3 =

1
N

PN
i=1 yi1∆yi3.

Proof. see Appendix A.

Theorem 1 shows that all GMM estimators have large sample distributions with

non-standard convergence rates when the convergence is according to (19). The Dif and

one and two step Sys estimators are all inconsistent under the convergence scheme in

(19) while the Lev estimator is consistent but with an unusual convergence rate since,

under (19), h(θ0)−1 goes to infinity faster than
√
N. The large sample distributions of

the estimators in Theorem 1 are all non-standard which implies that the large sample

distributions of the Wald and/or t-statistics, whose definitions are stated in Appendix

B, associated with them are non-standard as well.

The distribution of θ̂Dif in Theorem 1 is identical to the distribution in Kruiniger

(2009) and Madsen (2003). In Kruiniger (2009) also the large sample distributions of

θ̂Lev and θ̂Sys,2step are constructed albeit using a different DGP for the initial obser-

vations. The qualitative conclusions from Kruiniger (2009) that θ̂Lev is consistent but
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with a non-standard large sample distribution and that θ̂Sys,2step is inconsistent and

converges to a random variable result as well from Theorem 1.

Theorem 2. Under Assumption 1, the conditions in (3), finite fourth moments of ci
and uit, i = 1, . . . , N, t = 2, . . . , T and when (19) holds, the large sample distributions

of the Wald statistics associated with the two step GMM estimators that result from

the Dif, Lev and Sys moment conditions when T = 3 read:

WDif(θ) →
θ0↑1, h(θ0)

√
N→0

d

ψ22
(ψ3−θψ2)2

( ψ3
−ψ2)

0
V −1y1∆y,y1∆y

( ψ3
−ψ2)

WLev(θ) →
θ0↑1, h(θ0)

√
N→0

d

³
ψcu,1 + ψcu,3 + (1− θ) ψ2

h(θ0)

´2
∙h

ψcu,1+ψcu,3
ψ2

i2
Vy1∆y,y1∆y,11 + Vcu,11 + Vcu,33

¸−1

WSys,2step(θ) →
θ0↑1, h(θ0)

√
N→0

d

ψ22
¡
1
1

¢0
V −1y1∆y,y1∆y

¡
1
1

¢
⎛⎜⎜⎜⎜⎝

2ψ22

⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 1
1

⎞⎟⎠
(ψ23−ψ3ψ2)

⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 0
1

⎞⎟⎠

⎞⎟⎟⎟⎟⎠
2

⎛⎜⎜⎜⎜⎝1− θ − ψ23−ψ3ψ2
2ψ22

⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 0
1

⎞⎟⎠
⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 1
1

⎞⎟⎠

⎞⎟⎟⎟⎟⎠
2

.

(28)

Proof. see Appendix A.

Unlike the large sample distributions of the Wald statistics in Theorem 2, the large

sample distribution of the GMM-LM statistic proposed by Newey and West (1987),

whose definition is stated in Appendix B, remains standard χ2 when the true value of

θ gets close to one. Because the moment conditions do not identify θ when the true

value of θ gets close to one according to (19), it remains standard χ2 for all tested

values of θ as stated in Theorem 3.

Theorem 3. Under Assumption 1, the conditions in (3), finite fourth moments of ci
and uit, i = 1, . . . , N, t = 2, . . . , T and when (19) holds, the large sample distributions

of the GMM-LM statistics of Newey and West (1987) that result from the Dif, Lev and

12



Sys moment conditions when T = 3 read:

GMM-LMDif(θ) →
θ0↑1, h(θ0)

√
N→0

d

χ2(1)

GMM-LMLev(θ) →
θ0↑1, h(θ0)

√
N→0

d

χ2(1)

GMM-LMSys(θ) →
θ0↑1, h(θ0)

√
N→0

d

χ2(1).

(29)

Proof. see Appendix A.

The large sample distributions of the GMM-LM statistic in Theorem 3 properly

reflect that θ is not identified by the moment conditions when its true value is equal to

one and the convergence is according to (19). Accordingly, the large sample distribution

of the GMM-LM statistic is the same for all values of θ since it is not-identified.

Alongside the Wald and GMM-LM statistics, we also use the identification robust

KLM statistic proposed in Kleibergen (2002,2005) and the GMM Anderson-Rubin

(GMM-AR) statistic, see Anderson and Rubin (1949) and Stock and Wright (2000), to

analyze the identification of θ by the different moment conditions when its true value

gets close to one. Their definitions are stated in Appendix B. When T equals 3, these

statistics are both identical to the GMM-LM statistic when we use either the Dif or Lev

moment conditions since θ is then exactly identified by the moment conditions. When

we use the Sys moment conditions, so θ is over-identified by the moment conditions,

these statistics differ from the GMM-LM statistic. The large sample distributions of

the KLM and GMM-AR statistics do not alter when the tested parameter becomes

non-identified so the large sample distributions of them remain standard χ2 for all

values of θ under (19) albeit with different degrees of freedom. We further discuss the

large sample distributions of these statistics in Theorem 6 in the next section.
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Panel 1. Rejection frequencies of 95% significance tests for different values

of θ while the true value is one using DGP 1, T = 3, σ2c = 1, N = 500

and Dif (solid), Lev (dashed) and Sys (dash-dot) moments.
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Figure 1.1. Wald statistics. Figure 1.2. GMM-LM statistics.

Identification in simulated data To illustrate the identification issues with the

different moment conditions when T = 3, we generate observations from DGP 1 with

T = 3, N = 500 and σ2c = 1, σ
2
t = 1, t = 1, . . . , T. We use them to compute the large

sample distributions of the Wald and GMM-LM statistics stated in Theorems 2 and 3.

These are shown in Figures 1.1 and 1.2 in Panel 1. Figure 1.1 contains the simulated

distributions of the Wald statistic while Figure 1.2 contains the simulated distributions

of the GMM-LM statistic.

Because of the specification of the data generating process, the ratios involved in

the expressions of the large sample distributions of the Wald statistics that use the Dif

and Sys moment conditions simplify considerably at θ = 1. For the Wald statistic using

the Dif moment condition, the numerator cancels out with the denominator and the

remaining constant is also such that it scales ψ22 to a χ
2(1) distributed random variable.

This explains why this Wald statistic is size correct, so the rejection frequency is around

5%, when θ = 1 as shown in Figure 1.1.

For the Wald statistic using the Sys moment conditions when we test θ = 1, the

squared terms in the brackets cancel out against each other so the large sample dis-

tribution only consists of the two elements at the front of the expression in Theorem

14



2. These are again such that the second element scales out the variance of the first

so we are left with a standard χ2(1) distributed random variable. This explains why

the Wald statistic with the Sys moment conditions is size correct as well as shown in

Figure 1.1.

The large sample distribution of the Wald statistic using the Lev moment condition

in Theorem 2 clearly depends on nuisance parameters through Vy1∆y,y1∆y,11. When

Vy1∆y,y1∆y,11 equals zero, which basically means that the convergence is according to

(17) instead of (19), it is size correct while it is size distorted for non-zero values of

Vy1∆y,y1∆y,11 as shown in Figure 1.1.

Although the Wald statistics using the Dif and Sys moment conditions are size

correct, their rejection frequencies for other values of θ are non-standard because of the

non-standard large sample distributions. Figure 1.1 therefore shows that the rejection

frequency of the Wald statistic using the Dif moment condition declines when we get

further away from θ while the rejection frequency of the Wald statistic using the Sys

moment conditions increases. Figure 1.1 also shows that the rejection frequency of

the Wald statistic using the Lev moment conditions is an increasing function of the

distance towards one.

Figure 1.2 confirms the findings from Theorem 3 and shows that the rejection

frequency of all three GMM-LM statistics is equal to the size of the test for all values

of θ when the true value of θ is equal to one.

3.2 Identification from Lev and Dif moment conditions when
T > 3.

The identification issues discussed before extend to the Lev and Dif moment conditions

for larger numbers of time series observations. The derivatives of the Dif and Lev

sample moments read:

Dif: − 1
N

PN
i=1 yij∆yit−1 j = 1, . . . , t− 2; t = 3, . . . , T

Lev: − 1
N

PN
i=1 yit−1∆yit−1 t = 3, . . . , T,

(30)

and their convergence behavior under (19) is characterized by

h(θ0)
1√
N

PN
i=1 yij∆yit →

d
N→∞, θ0↑1

ψt j = 1, . . . , t− 1; t = 2, . . . , T − 1, (31)

with ψt, t = 2, . . . , T−1, independently distributed normal random variables with mean
zero and variance σ2t =var(uit). This shows that the Dif and Lev moment conditions

15



do not identify θ for larger number of time series observations under the convergence

scheme in (30). Hence, the identification of θ using the Dif and Lev moments conditions

is arbitrary when θ0 is close to one and h(θ0) is equal to zero when θ0 equals one.

Identification in simulated data The consequences of the non-identification of θ

by the Dif and Lev moment conditions when the true value of θ is equal to one for

values of T larger than three, has similar consequences for the large sample distributions

of estimators and test statistics as when T equals three. We therefore do not derive

these consequences analytically but just illustrate them using a simulation experiment

similar to the one used to construct the figures in Panel 1.

To illustrate the identification issues with the different moment conditions when

T exceeds 3, we generate observations from DGP 1 with T = 4 and 5, N = 500 and

σ2c = 1, σ2t = 1, t = 1, . . . , T. Panel 2 shows the rejection frequencies of testing for

different values of θ when its true value is equal to one using the Wald and GMM-

LM statistics for values of T equal to 4, Figures 2.1 and 2.2, and 5, Figures 2.1 and

2.2. Figures 2.1 and 2.3 that contain the rejection frequencies of the Wald statistics

show that its non-standard large sample distributions are now such that it is size

distorted also when we just use the Dif moment conditions. Besides that the rejection

frequencies also decrease when we move further away from one when we use the Dif

moment conditions which is similar to Figure 1.1. Figures 2.2 and 2.4 are identical to

Figure 1.2 and show that the large sample distributions of the GMM-LM statistic are

flat which we expect for statistics that test parameters that are not identified since the

rejection frequencies are almost the same and equal to the size for all tested values of

the parameter.
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Panel 2. Rejection frequencies of 95% significance tests for different values

of θ while the true value is one using DGP 1, T = 4 and 5, σ2c = 10, N = 500

and Dif (solid) and Lev (dashed) moments.
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Figure 2.1. Wald statistics, T = 4. Figure 2.2. GMM-LM statistics, T = 4.
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Figure 2.3. Wald statistics, T = 5. Figure 2.3. GMM-LM statistics, T = 5.
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4 Identification using Sys moments

We just showed that also for larger numbers of time periods neither the Dif nor the

Lev moment conditions identify θ for all data generating processes for which the initial

observations satisfy these moment conditions. We therefore expect the same to hold

for the Sys moment conditions for such number of time periods which is, as we showed

previously, the case when the number of time periods is equal to three. To analyze the

identification of θ using the Sys moment conditions, we begin with a representation

theorem.

Theorem 4 (Representation Theorem). Under Assumption 1, the conditions in

(3), finite fourth moments of ci and uit, i = 1, . . . , N, t = 2, . . . , T, we can characterize

the large sample behavior of the Sys sample moments and their derivatives for values

of θ0 close to one byÃ
fN(θ)

qN(θ)

!
≈
"Ã

1− θ

1

!
⊗ Ik

#
μ(σ2) + 1

h(θ0)
√
N

Ã
Af(θ)

Aq

!
ψ+Ã

Af(θ)

Aq

!
(ι2 ⊗ ιT−2) (limθ0↑1E((θ0 − 1)u2i1)) + 1√

N

Ã
Bf(θ)

Bq

!
ψcu,

(32)

with ιj a j × 1 dimensional vector of ones, μ(σ2) a constant and ψ and ψcu are mean

zero normal random variables and for:

T=3 we have two moment conditions and the dimension of ψ is two.

T=4 we have five moment conditions and the dimension of ψ is three.

T=5 we have nine moment conditions and the dimension of ψ is four.

General T 1
2
(T + 1)(T − 2) moment condtions and the dimension of ψ is T − 1.

The exact specification of Af(θ), Aq, Bf(θ), Bq, μ(σ
2), ψ and ψcu for values of T equal

to 3, 4 and 5 is given in Appendix A.

Proof. see Appendix A.

Theorem 4 shows that

√
Nh(θ0)

Ã
fN(θ)

qN(θ)

!
→

θ0↑1, h(θ0)
√
N→0

d

Ã
Af(θ)

Aq

!
ψ, (33)
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which seems to indicate that θ is not identified by the Sys moment conditions for

any number of time periods when the limit sequence in (19) holds since ψ is a mean

zero normal random variable. The expression in (33) is qualitatively the same as the

one in (25), which applies to T = 3, except for that the number of components of

ψ can be less than that of either fN(θ) or qN(θ) while these numbers are equal in

(25). If we therefore pre-multiply the Sys moment conditions in (32) by the orthogonal

complement of Af(θ), we obtain

Af(θ)
0
⊥fN(θ) ≈ (1− θ)Af(θ)

0
⊥μ(σ

2) + 1√
N
Af(θ)

0
⊥Bf(θ)ψcu, (34)

withAf(θ)⊥ a 1
2
(T+1)(T−2)×¡1

2
(T − 1)(T − 2)− 1¢ dimensional matrix which is such

that Af(θ)
0
⊥Af(θ) ≡ 0, Af(θ)

0
⊥Af(θ)⊥ ≡ I( 12 (T−1)(T−2)−1). The rotated Sys moment

conditions in (34) do not suffer from the degeneracies caused by the divergence of
1

h(θ0)
√
N
ψ. It implies that θ is identified by the Sys moment conditions regardless of the

process generating the initial conditions when there are more than three time periods.

When there are three time periods, the orthogonal complement of Af(θ) is not defined

since Af(θ) is a square matrix so θ is not necessarily identified. From three time periods

onwards we therefore expect estimators of θ to be consistent regardless of the process

that generated the initial observations as long as it satisfies the Sys moment conditions.

Theorem 5. Under Assumption 1, the conditions in (3), finite fourth moments of ci
and uit, i = 1, . . . , N, t = 2, . . . , T, with T larger than three, the large sample behavior

of the one step, two step and continuous updating estimators under the convergence

sequence in (19) reads:

1. One step estimator:

θ̂1s →
d
1− (ψ0A0qAqψ)

−1ψ0AqAf(1)ψ, (35)

which is inconsistent since Af(1) does not equal zero.

2. Two step estimator:

h(θ0)
−1(θ̂2s − 1)→

dµ
ψ0A0qAf(θ̂1s)⊥

h
Af(θ̂1s)

0
⊥Bf(θ̂1s)Vuu,uu.y1∆yBf(θ̂1s)

0Af(θ̂1s)⊥
i−1

Af(θ̂1s)
0
⊥Aqψ

¶−1
ψ0A0qAf(θ̂1s)⊥

h
Af(θ̂1s)

0
⊥Bf(θ̂1s)Vuu,uu.y1∆yBf(θ̂1s)

0Af(θ̂1s)⊥
i−1

Af(θ̂1s)
0
⊥h

(1− θ̂1s)μ(σ
2) + 1√

N
Bf(θ̂1s)

¡
ψcu − V 0

y1∆y,uuV
−1
y1∆y,y1∆yψ

¢i
,

(36)

19



which shows that the two step estimator is consistent but with a non-standard

convergence rate, h(θ0), and a non-standard large sample distribution.

3. Continuous updating estimator (CUE), see Hansen et al (1996):
√
N(θ̂CUE − 1)→

d£
μ(σ2)0Af(1)⊥ [Af(1)

0
⊥Bf(1)Vuu,uu.y1∆yBf(1)

0Af(1)⊥]
−1Af(1)

0
⊥μ(σ

2)
¤−1

μ(σ2)0Af(1)⊥
[Af(1)

0
⊥Bf(1)Vuu,uu.y1∆yBf(1)

0Af(1)⊥]
−1Af(1)

0
⊥Bf(1)

£
ψcu − V 0

y1∆y,uuV
−1
y1∆y,y1∆yψ

¤
,

(37)

so the CUE is consistent with a standard convergence rate and large sample dis-

tribution.

where

Vuu,uu = var(ciui2, ciui3, ciui4, u
2
i2, ui2ui3, ui2ui4, u

2
i3, ui3ui4)

Vy1∆y,y1∆y = var(yi1ui2, yi1ui3, yi1ui4)

Vuu,y1∆y = cov((ciui2, ciui3, ciui4, u
2
i2, ui2ui3, ui2ui4, u

2
i3, ui3ui4),

(yi1ui2, yi1ui3, yi1ui4))

Vuu,uu.y1∆y = Vuu,uu − V 0
y1∆y,uuV

−1
y1∆y,y1∆yVy1∆y,uu.

(38)

Proof. see Appendix A.

Theorem 5 states the large sample distributions of the one step, two step and con-

tinuous updating estimators. Because of the divergence of the Sys sample moments in

the direction of Af(θ), the one step estimator is inconsistent and converges to a random

variable. The two step estimator uses the one step estimator as input which explains

why the two step estimator is consistent but with a non-standard convergence rate and

large sample distribution. When we further iterate to obtain the continuous updating

estimator, Theorem 5 shows that we do obtain a standard
√
N convergence rate and

a normal large sample distribution. Because only the large sample distribution of the

fully iterated CUE is normal, we, however, expect that the finite sample distribution

of the CUE is considerably different from a normal distribution.

In Kruiniger (2009), the large sample distribution of the two step estimator for

values of θ0 close to one and when T exceeds 3 is constructed as well. Kruiniger (2009)

shows that the two step estimator is inconsistent. This probably results because it is

not mentioned in Kruiniger (2009) that the number of divergent components in the

Sys moment conditions is less than the number of elements of the moment conditions

so we can identify θ using that part of the moment conditions that does not depend
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on the divergent components. This is exactly what happens for the estimators since

all their components result from the orthogonal complement of Af(θ), Af(θ)⊥, which
is further reflected by the expressions of the large sample distributions in Theorem 5.

Panel 3. Rejection frequencies of 95% tests for different values of θ while the true value

value is one using the two step and CUE Wald t-statistics with Sys moment conditions

and varying numbers of T, DGP 1, σ2c = 1, σ
2
t = 1, t = 1, . . . , T, N = 500 : T = 3

(solid), 4 (dashed), 5 (dash-dotted), 6 (dotted), 7 (solid with plusses).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

R
ej

ec
tio

n 
fre

qu
en

cy

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

R
ej

ec
tio

n 
fre

qu
en

cy

Figure 3.1. Two step Wald statistic Figure 3.2. CUE Wald statistic

To assess the convergence speed of the finite sample distributions of the two step

estimator and CUE to their (non-) standard limiting distributions, we compute the

rejection frequencies of testing for different values of θ while the data is generated

using DGP 1 with a value of θ0 close to one. Panel 3 shows the rejection frequencies

of the Wald statistics for both estimators. Both Figure 3.1, which contains the rejec-

tion frequencies that result for the two step Wald statistic, and 3.2, which contains

the rejection frequencies that result for the CUE Wald statistic, show that the Wald

statistics are severely size distorted. This shows that the normality of the large sample

distribution of the CUE in Theorem 5 is often a bad approximation of its small sample

distribution when the true value of θ is close to one. For the two step estimator, the

size distortions are as expected since its large sample distribution is not normal.

Since the finite sample distributions of the two step and CUE Wald statistics are

badly approximated by their large sample distributions, we construct the large sample

distributions of the GMM-AR, GMM-LM and KLM statistics, whose definitions are

stated in Appendix B, in order to assess whether they provide better approximations

of their finite sample distributions. We also use these statistics, in the next section, to

compute the power envelope.

21



Theorem 6. Under Assumption 1, the conditions in (3), finite fourth moments of ci
and uit, i = 1, . . . , N, t = 2, . . . , T and under the convergence sequence (19), the large

sample distributions of the GMM-AR, KLM and GMM-LM statistics for values of T

larger than three are such that:

1. The GMM-AR statistic, defined in Appendix B, has a non-central χ2 distribu-

tion with as many degrees of freedom as moment conditions and non-centrality

parameter

N(1− θ)2μ(σ2)0Af(θ)⊥(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−1Af(θ)
0
⊥μ(σ

2).

(39)

2. The KLM statistic, defined in Appendix B, has a non-central χ2(1) distribution

with non-centrality parameter

N(1− θ)2μ(σ2)0Af(θ)⊥(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2

Pg(θ)(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2Af(θ)⊥)0μ(σ2)

(40)

where g (θ) is such that

g(θ) = (Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2

Af(θ)
0
⊥
n
−[I 1

2
(T+1)(T−2) − (1− θ)Aq(Af(θ)

0Af(θ))
−1Af(θ)

0]μ(σ2)+

[AqVy1∆y,uuBf(θ)
0Af(θ)(Af(θ)

0Af(θ))
−1 +BqV

0
y1∆y,uu

... BqVuu,uuBf(θ)
0Af(θ)⊥]Ã

Vy1∆y,y1∆y Vy1∆y,uuBf(θ)
0Af(θ)⊥

Af(θ)
0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!−1
Ã

0

(1− θ)Af(θ)
0
⊥μ(σ

2)

!)
.

(41)

3. The GMM-LM statistic, defined in Appendix B, has a non-central χ2(1) distri-

bution with non-centrality parameter

N(1− θ)2μ(σ2)0Af(θ)⊥(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2Ph(θ)

(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2Af(θ)

0
⊥μ(σ

2)
(42)

where h(θ) is such that

h(θ) = (Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2Af(θ)

0
⊥Aqψ (43)

so h(θ) is a random variable independent of the normal random variable that

constitutes the quadratic form that makes up the statistic.
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Proof. see Appendix A.

The large sample distributions of the GMM-AR and KLM statistics are as expected

which also applies to their non-centrality parameters. The non-centrality parameter

of the large sample distribution of the GMM-LM statistic is rather unusual since it

depends on ψ.

5 Power Envelope

We just showed that the identification of θ gradually improves when the number of time

periods increases and the true value of θ is close to one. To determine the strength

of identification under all applicable data generating processes, i.e. those that satisfy

the Sys moment conditions, we construct the power envelope when the true value of

θ is equal to one. Usually the power envelope is obtained from the likelihood ratio

statistic testing point null against point alternative hypothezes which results from the

Neyman-Pearson lemma, see e.g. Andrews et. al. (2005). Because of the incidental

parameter problem that results from the fixed effects ci, we can, however, not use the

likelihood ratio statistic to construct the power envelope since the maximum likelihood

estimator is inconsistent. We therefore obtain the power envelope using the least

favorable alternative. The least favorable data generating process satisfies the Sys

moment conditions and leads to the smallest rejection frequency of H0 : θ = θ0 for

values of θ0 smaller than one when the true value of θ is equal to one. It results

from those data generating processes that have the maximum rate for h(θ) while still

satisfying the Sys moment conditions. This maximum rate results from Assumption 1

so, since

yi1 = μi + ui1, (44)

it has to hold that μi =
ci

1−θ0 and the variance of ui1 is at most of order (1− θ0)
−2+ε,

for some ε > 0. Hence, the maximal rate for h(θ0) is proportional to 1 − θ0. We also

note that the Lev moment conditions do not hold when μi =
ci

(1−θ0)1+ε , for some ε > 0.
The maximal rate for h(θ0) is therefore attained for DGPs 1, 2 and 5.

We construct the power envelope for the identification robust GMM-AR, KLM and

GMM-LM statistics.

Theorem 7. Under Assumption 1, the conditions in (3), finite fourth moments of

ci and uit, i = 1, . . . , N, t = 2, . . . , T, the least favorable data generating process for

discriminating between values of θ less than one from a value of θ equal to one while
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the true value is equal to one is such that the non-centrality parameter in the limiting

distribution in Theorem 6 has a value of the covariance matrix Vuu,uu.y1∆y equal to

Vuu,uu.y1∆y =

Ã
0 0

0 diag(E(u2i2 − σ22)
2, σ22σ

2
3, σ

2
2σ
2
4, E(u

2
i3 − σ23)

2, σ23σ
2
4))

!
. (45)

Proof. see Appendix A.

Theorem 7 shows that the large sample distributions under the least favorable

alternative do not depend on the variance of the fixed effects, σ2c. They only depend

on the variance of the disturbances at the different time points and the fourth order

moments of the disturbances. We use Theorem 6 to construct the power envelopes for

the different statistics. To compute them we use values of σ2t that are constant over

time and disturbances that result from a normal distribution so the excess kurtosis is

equal to three.

Panels 4-8 contain the power envelopes that result for the GMM-AR, GMM-LM

and KLM statistics. All these power envelopes are computed by simulation and for

none of them is there any size distortion at the true value. This shows that the large

sample distributions of the statistics stated in Theorem 6 provide good approximations

of their small sample distributions.

Figures 4.1-4.5 in Panel 4 contain the power envelopes for the GMM-AR statistic

where each figure shows the power envelopes that hold for a varying number of cross

sectional observations and the same number of time series observations. Figures 5.1-

5.3 in Panel 5 contain the power envelopes for the same number of cross sectional

observations and varying numbers of time series observations.

Figure 4.1, which is for three time series periods, shows that the Sys moment

conditions do not identify θ when T = 3 since the power envelope which results from

the least favorable alternative (from the perspective of the tested hypothesis) is flat

at 5%. This accords with our discussion in Section 3.1. Figures 4.2-4.5 show that

the identification improves when either the number of time series observations or the

number of cross sectional observations increases. The former is further highlighted in

Figures 5.1-5.3 in Panel 5. These figures clearly show that θ is not identified in case

of three time series observations and becomes identified as the number of time series

observations increases.

Panel 6 contains the power envelopes for the identification robust KLM statistic. It

again shows that Sys moment conditions do not identify θ when the true value is close

to one and the number of time periods is equal to three. When we increase the number
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of time periods, θ gradually becomes better identified. For the same number of time

series and cross sectional observations, the power envelope of the KLM statistic lies

above the power envelope that results for the GMM-AR statistic. This results because

of the smaller degree of freedom parameter of the limiting distribution of the KLM

statistic compared to that of the GMM-AR statistic.

Panel 7 contains the power envelopes of the GMM-LM and the two step Wald t-

statistics. The large sample distributions of both of these statistics are sensitive to the

identification of the parameters. Their power envelopes are therefore non-standard.

First for the GMM-LM statistic, we see that it is size correct but the power envelope

partially goes down when we have more time series observations. Second for the two

step Wald statistic, we see that it gets more and more size distorted for larger number

of time series observations. This results from the non-standard limiting distribution of

the two step estimator stated in Theorem 5 and is shown in Figure 3.1 as well.

Panel 8 contains the power envelopes of the GMM-AR, GMM-LM and KLM statis-

tics for different numbers of time periods and N = 500. The power envelope of all these

statistics are flat at 5% when T = 3 which shows the non-identification of θ by the Sys

moment conditions for values of θ0 close to one. For larger number of time periods,

the power envelope of the KLM statistics lies above the power envelope of the other

statistic so the KLM statistic is the statistic that maximizes the rejection frequency

under the worst possible scenario.

6 Conclusions

We analyze the identification of the parameters by the moment conditions in linear

dynamic panel data models. We show that the Dif and Lev moment conditions for

general numbers of time series observations and the Sys moment conditions for three

time series observations do not always identify the parameters of the panel data model.

When there are more than three time series observations, the Sys moment conditions

identify the parameters of the panel data model for every data generating process for the

initial observations that accords with the moment conditions. The non-identification

of the parameters results from the divergence of the initial observations for some,

common, data generating processes. This divergence leads to non-standard behavior

of estimators or slow convergence to their limiting distributions even in case of the

Sys moment conditions with more than three time periods. Statistics based on these

estimators, like Wald statistics, therefore often behave badly. The performance of the
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identification robust GMM statistics, like the GMM-AR and KLM statistic, is, however,

excellent. We use these statistics to compute the power envelope which shows that the

KLM statistic is the statistic that minimizes the rejection frequency for the worst case

data generating process with persistent data.

We analyzed the simplest panel autoregressive model in order to study the identifi-

cation issues in an isolated manner. In future work, we plan to extend the analysis by

incorporating more lags of the dependent variable and additional explanatory variables.
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Panel 4. Power envelopes of 95% significance tests of different values of θ while the true

value is one using the GMM-AR statistic with Sys moment conditions and varying numbers

of T and N, σ2t = 1, t = 1, . . . , T. N = 250 (dashed), 500 (solid), 1000 (dash-dotted).
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Panel 5. Power envelopes of 95% tests for different values of θ while the true value

is one using the GMM-AR statistic with Sys moment conditions and varying

numbers of T and N, σ2t = 1, t = 1, . . . , T. T = 3 (solid), 4 (dashed), 5 (dash-

dotted), 6 (dotted), 7 (solid with plusses).
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Panel 6. Power envelopes of 95% tests for different values of θ while the true value

value is one using the KLM statistic with Sys moment conditions and varying numbers

of T and N, σ2t = 1, t = 1, . . . , T. T = 3 (solid), 4 (dashed), 5 (dash-dotted), 6 (dotted),

7 (solid with plusses).
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Panel 7. Power envelopes of 95% tests for different values of θ while the true value

value is one using the GMM-LM and 2 step Wald t-statistics with Sys moment conditions

and varying numbers of T and N, σ2t = 1, t = 1, . . . , T. T = 3 (solid), 4 (dashed),

5 (dash-dotted), 6 (dotted), 7 (solid with plusses).
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Panel 8. Power envelopes of 95% significance tests of different values of θ while the true value

is one using the GMM-AR (dash-dot), KLM (dashed) and GMM-LM (solid) statistics, N = 500
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Appendix A. Proofs

Proof of Theorem 1. When T = 3, we can specify the large sample behavior of the

Sys moment conditions by

fN(θ) =
1
N

PN
i=1

Ã
yi1(∆yi3 − θ∆yi2)

∆yi2(yi3 − θyi2)

!
≈ μ(σ2) +Af(θ)

³
1

h(θ0)
√
N
ψ + ι2E(limθ0↑1(1− θ0)u

2
i1

´
+ 1√

N
Bf(θ)ψcu,

with

μ(σ2) =

Ã
0

σ22

!
, Af(θ) =

Ã
−θ 1

1− θ 0

!
, Bf(θ) =

Ã
0 0 0

1− θ 1− θ 1

!

h(θ0)√
N

PN
i=1

Ã
yi1ui2

yi1ui3

!
→
d
ψ =

Ã
ψ2
ψ3

!
, 1√

N

PN
i=1

⎛⎜⎝ ciui2

u2i2 − σ22
ui2ui3

⎞⎟⎠→
d
ψcu =

⎛⎜⎝ ψcu,1

ψcu,2

ψcu,3

⎞⎟⎠
and ψ and ψcu are normally distributed random variables. Under the limit behavior in

(19), we can then characterize the large sample behavior of the Dif, Lev and one step

Sys estimators by

θ̂Dif =
1
N

PN
i=1 yi1∆yi3

1
N

PN
i=1 yi1∆yi2

→
θ0↑1, h(θ0)

√
N→0

d

ψ3
ψ2
= 1 + ψ3−ψ2

ψ2

θ̂Lev =
1
N

PN
i=1 yi3∆yi2

1
N

PN
i=1 yi2∆yi2

= θ0 +
1
N

PN
i=1(ci+ui3)∆yi2

1
N

PN
i=1 yi2∆yi2

h(θ0)(θ̂Lev − θ0) →
θ0↑1, h(θ0)

√
N→0

d

ψcu,1+ψcu,3
ψ2

and

θ̂Sys,1step =

⎛⎜⎝ 1
N

PN
i=1

⎛⎜⎝ yi1∆yi2

yi2∆yi2

⎞⎟⎠
⎞⎟⎠
0⎛⎜⎝ 1

N

PN
i=1

⎛⎜⎝ yi1∆yi3

yi3∆yi2

⎞⎟⎠
⎞⎟⎠

⎛⎜⎝ 1
N

PN
i=1

⎛⎜⎝ yi1∆yi2)

yi2∆yi2

⎞⎟⎠
⎞⎟⎠
0⎛⎜⎝ 1

N

PN
i=1

⎛⎜⎝ yi1∆yi2)

yi2∆yi2

⎞⎟⎠
⎞⎟⎠

→
θ0↑1, h(θ0)

√
N→0

d

ψ22+ψ3ψ2
2ψ22

= 1 + ψ3−ψ2
2ψ2

For the two step Wald estimator, we first need to characterize the behavior of the

Eiker-White covariance estimator V̂ff(θ) :

V̂ff(θ) =
1
N

PN
i=1(fi(θ)− fN(θ))(fi(θ)− fN(θ))

0,
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which reads
h(θ0)

2V̂ff(θ) →
θ0↑1, h(θ0)

√
N→0

d

Af(θ)Vy1∆y,y1∆yAf(θ)
0

with

h(θ0)
2

"
1
N

PN
i=1

Ã
yi1

Ã
∆yi2

∆yi3

!
−
Ã

yi1∆yi2

yi1∆yi3

!!Ã
yi1

Ã
∆yi2

∆yi3

!
−
Ã

yi1∆yi2

yi1∆yi3

!!0#
→

θ0↑1, h(θ0)
√
N→0

d

Vy1∆y,y1∆y,

and where yi1∆yi2 =
1
N

PN
i=1 yi1∆yi2, yi1∆yi3 =

1
N

PN
i=1 yi1∆yi3. The limit behavior of

the two step Sys estimator then results as

θ̂Sys,2Step − θ0

=

"Ã
1
N

PN
i=1

Ã
yi1∆yi2

yi2∆yi2

!!0
V̂ff(θ̂Sys,1step)

−1
Ã

1
N

PN
i=1

Ã
yi1∆yi2

yi2∆yi2

!!#−1
"Ã

1
N

PN
i=1

Ã
yi1∆yi2

yi2∆yi2

!!0
V̂ff(θ̂Sys,1step)

−1
Ã

1
N

PN
i=1

Ã
yi1∆ui3

(ci + ui3)∆yi2

!!#

→
θ0↑1, h(θ0)

√
N→0

d

"
ψ2

Ã
1

1

!0
Af(θ̂Sys,1step)

−10V −1y1∆y,y1∆yAf(θ̂Sys,1step)
−1
Ã
1

1

!
ψ2

#−1

ψ2

Ã
1

1

!0
Af(θ̂Sys,1step)

−10V −1y1∆y,y1∆yAf(θ̂Sys,1step)
−1
Ã
1

0

!
ψ3

= (1− θ̂Sys,1step)
ψ3
ψ2

"Ã
1

1

!0
V −1y1∆y,y1∆y

Ã
1

1

!#−1Ã
1

1

!0
V −1y1∆y,y1∆y

Ã
0

1

!

= −ψ23−ψ3ψ2
2ψ22

⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 0
1

⎞⎟⎠
⎛⎜⎝ 1
1

⎞⎟⎠
0

V −1y1∆y,y1∆y

⎛⎜⎝ 1
1

⎞⎟⎠

where we used thatAf(θ)
−1 = 1

1−θ

µ
0
1−θ

... 1
θ

¶
soAf(θ)

−1 ¡1
1

¢
= 1

1−θ
¡
1
1

¢
andAf(θ)

−1 ¡1
0

¢
=¡

0
1

¢
.

Proof of Theorem 2. The two step Wald statistic is defined as:

W2s(θ) = N(θ̂2s − θ)0qN(θ̂2s)0V̂ff(θ̂2s)−1qN(θ̂2s)(θ̂2s − θ).
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For the Dif estimator, we can characterize the limit behavior ofNqN(θ̂2s)
0V̂ff(θ̂2s)−1qN(θ̂2s)

under (19) by

NqN(θ̂2s)
0V̂ff(θ̂2s)−1qN(θ̂2s) →

θ0↑1, h(θ0)
√
N→0

d

ψ2

h¡−θ̂2s
1

¢0
V −1y1∆y,y1∆y

¡−θ̂2s
1

¢i−1
ψ2

= ψ42

h¡−ψ3
ψ2

¢0
V −1y1∆y,y1∆y

¡−ψ3
ψ2

¢i−1
so

WDif(θ) →
θ0↑1, h(θ0)

√
N→0

d

³
ψ3−θψ2

ψ2

´2
ψ42

( ψ2
−ψ3)

0
V −1y1∆y,y1∆y

( ψ2
−ψ3)

= (ψ3 − θψ2)
2 ψ22

( ψ2
−ψ3)

0
V −1y1∆y,y1∆y

( ψ2
−ψ3)

.

For the Lev estimator, we use that θ̂Lev ≈ 1 + h(θ0)
h
ψcu,1+ψcu,3

ψ2

i
so θ̂Lev − θ ≈ 1− θ +

h(θ0)
h
ψcu,1+ψcu,3

ψ2

i
and

∆yi2(yi3 − θ̂Levyi2) ≈ ∆yi2((1− 1− h(θ0)
h
ψcu,1+ψcu,3

ψ2

i
)yi2 + ci + ui3)

= ∆yi2(h(θ0)
h
ψcu,1+ψcu,3

ψ2

i
(yi1 + ci + ui2) + ci + ui3)

which implies that

V̂ff(θ̂lev) →
θ0↑1, h(θ0)

√
N→0

d

h
ψcu,1+ψcu,3

ψ2

i2
Vy1∆y,y1∆y,11 + Vcu,11 + Vcu,33,

with Vcu,11 and Vcu,33 the first and third diagonal elements of the covariance matrix of

(ci∆yi2
... u2i2 − σ22

... ui2ui3)0 and Vy1∆y,y1∆y,11 the first diagonal element of Vy1∆y,y1∆y.

The large sample behavior of the Wald statistic using the Lev moment conditions then

results as

WLev(θ) →
θ0↑1, h(θ0)

√
N→0

d³
1− θ + h(θ0)

h
ψcu,1+ψcu,3

ψ2

i´2 ³
ψ2

h(θ0)

´2 ∙hψcu,1+ψcu,3
ψ2

i2
Vy1∆y,y1∆y,11 + Vcu,11 + Vcu,33
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=
³
ψcu,1 + ψcu,3 + (1− θ) ψ2

h(θ0)

´2 ∙hψcu,1+ψcu,3
ψ2

i2
Vy1∆y,y1∆y,11 + Vcu,11 + Vcu,33

¸−1
.

The large sample behavior of θ̂Sys,2step − θ :

θ̂Sys,2step − θ = θ̂Sys,2step − 1 + 1− θ

→
θ0↑1, h(θ0)

√
N→0

d

1− θ − ψ23−ψ3ψ2
2ψ22

⎛⎜⎝ 1
1

⎞⎟⎠
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⎞⎟⎠
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so since

qN(θ̂Sys,2step)
0V̂ff(θ̂Sys,2step)−1qN(θ̂Sys,2step) →

θ0↑1, h(θ0)
√
N→0

d

ψ22
(1−θ̂2s)2

¡
1
1

¢0
V −1y1∆y,y1∆y

¡
1
1

¢
,

we can characterize the limit behavior of the two step Wald statistic by:

WSys,2step(θ)

= (θ̂Sys,2step − θ)0
h
qN(θ̂Sys,2step)

0V̂ff(θ̂Sys,2step)−1qN(θ̂Sys,2step)
i
(θ̂Sys,2step − θ)

→
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Proof of Theorem 3. The large sample behavior of the GMM-LM statistic of Newey

and West (1987):

GMM-LM(θ0) = NfN(θ0)
0V̂ff(θ0)−1qN(θ0)

h
qN(θ0)

0V̂ff(θ0)−1qN(θ0)
i−1

qN(θ0)
0V̂ff(θ0)−1fN(θ0),

results from its different components. For the Dif and Lev moment conditions, it reads:

GMM-LMDif(θ0) →
θ0↑1, h(θ0)

√
N→0

d

ψ0Af(θ)
0
1 [Af(θ)1Vy1∆y,y1∆yAf(θ)

0
1]
−1 ¡1

0

¢0
ψ
h
ψ0
¡
1
0

¢0
[Af(θ)1Vy1∆y,y1∆yAf(θ)

0
1]
−1 ¡1

1

¢
ψ
i−1

[Af(θ)1Vy1∆y,y1∆yAf(θ)
0
1]
−1Af(θ)1ψ

= ψ0Af(θ)
0
1 [Af(θ)1Vy1∆y,y1∆yAf(θ)

0
1]
−1Af(θ)1ψ ∼ χ2(1),

GMM-LMLev(θ0) →
θ0↑1, h(θ0)

√
N→0

d

ψ0Af(θ)
0
2 [Af(θ)2Vy1∆y,y1∆yAf(θ)

0
2]
−1 ¡0

1

¢0
ψ
h
ψ0
¡
0
1

¢
[Af(θ)2Vy1∆y,y1∆yAf(θ)

0
2]
−1 ¡0

1

¢0
ψ
i−1

[Af(θ)2Vy1∆y,y1∆yAf(θ)
0
2]
−1Af(θ)2ψ

= ψ0Af(θ)
0
2 [Af(θ)2Vy1∆y,y1∆yAf(θ)

0
2]
−1Af(θ)2ψ ∼ χ2(1),
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with Af(θ)1 and Af(θ)2 the first and second row of Af(θ). For the Sys moment condi-

tions, the large sample behavior of the LM statistic results as:

GMM-LMSys(θ0) →
θ0↑1, h(θ0)

√
N→0

d

ψ0Af(θ)
0 [Af(θ)Vy1∆y,y1∆yAf(θ)

0]−1
¡
1
1
0
0

¢
ψ
h
ψ0
¡
1
1
0
0

¢0
[Af(θ)Vy1∆y,y1∆yAf(θ)

0]−1
¡
1
1
0
0

¢
ψ
i−1

[Af(θ)Vy1∆y,y1∆yAf(θ)
0]−1Af(θ)ψ

→
θ0↑1, h(θ0)

√
N→0

d

ψ0V −1y1∆y,y1∆y

¡
1
1

¢ h¡
1
1

¢0
V −1y1∆y,y1∆y

¡
1
1

¢i−1 ¡
1
1

¢0
V −1y1∆y,y1∆yψ

∼ χ2(1),

where we used that Af(θ)
−1 ¡1

1

¢
= 1

1−θ
¡
1
1

¢
.

Proof of Theorem 4. T=3. The specification of Af(θ), Aq, Bf(θ), Bq, μ(σ
2), ψ

and ψcu results from the proof of Theorem 1:

fN(θ) =
1
N

PN
i=1

Ã
yi1(∆yi3 − θ∆yi2)

∆yi2(yi3 − θyi2)

!
≈ μ(σ2) +Af(θ)

³
1

h(θ0)
√
N
ψ + ι2E(limθ0↑1(1− θ0)u

2
i1

´
+ 1√

N
Bf(θ)ψcu,

with

μ(σ2) =

Ã
0

σ22

!
, Af(θ) =

Ã
−θ 1

1− θ 0

!
, Bf(θ) =

Ã
0 0 0

1− θ 1− θ 1

!

Aq =

Ã
−1 0

−1 0

!
, Bq =

Ã
0 0 0

−1 −1 0

!

h(θ0)√
N

PN
i=1

Ã
yi1ui2

yi1ui3

!
→
d
ψ =

Ã
ψ2
ψ3

!
, 1√

N

PN
i=1

⎛⎜⎝ ciui2

u2i2 − σ22
ui2ui3

⎞⎟⎠→
d
ψcu =

⎛⎜⎝ ψcu,1

ψcu,2

ψcu,3

⎞⎟⎠
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T=4. We can specify the Sys sample moments and their derivative as

fN(θ) ≈ 1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
−θ 1 0

0 −θ 1

0 −θθ0 θ0

(θ0 − θ)θ0 0 0

0 (θ0 − θ)θ20 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎣
⎛⎜⎝ yi1ui2

yi1ui3

yi1ui4

⎞⎟⎠+ ι3E(limθ0↑1(1− θ0)u
2
i1)

⎤⎥⎦+

1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

(ci + ui2)(∆yi4 − θ∆yi3)

(1 + (θ0 − θ))ci∆yi2 + (θ0 − θ)ui2∆yi2 + ui3∆yi2

(1 + (θ0 − θ)(1 + θ0))ci∆yi3 + (θ0 − θ)ui3∆yi3 + (θ0 − θ)θ0ui2∆yi3 + ui4∆yi3

⎞⎟⎟⎟⎟⎟⎟⎠

qN(θ) ≈ − 1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 θ0 0

θ0 0 0

0 θ20 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎣
⎛⎜⎝ yi1ui2

yi1ui3

yi1ui4

⎞⎟⎠+ ι3E(limθ0↑1(1− θ0)u
2
i1)

⎤⎥⎦−

1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

(ci + ui2)∆yi3

ci∆yi2 + ui2∆ui2

(1 + θ0)ci∆yi3 + ui3∆yi3 + θ0ui2∆yi3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

so

Af(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
−θ 1 0

0 −θ 1

0 −θ 1

1− θ 0 0

0 1− θ 0

⎞⎟⎟⎟⎟⎟⎟⎠ , Bq =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

1 0 0 1 0 0 0 0

0 2 0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , μ(σ2) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

σ22
σ23

⎞⎟⎟⎟⎟⎟⎟⎠

Bf(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −θ 1 0 −θ 1 0 0

2− θ 0 0 1− θ 1 0 0 0

0 1 + 2(1− θ) 0 0 1− θ 0 1− θ 1

⎞⎟⎟⎟⎟⎟⎟⎠ , Aq =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 1 0

1 0 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
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and

√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ciui2

ciui3

ciui4

u2i2
ui2ui3

ui2ui4

u2i3
ui3ui4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

σ2
2

0

0

σ23
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→
d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψciui2

ψciui3

ψciui4

ψui2ui2

ψui2ui3

ψui2ui4

ψui3ui3

ψui3ui4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ψcu

h(θ0)√
N

PN
i=1

⎛⎜⎝ yi1ui2

yi1ui3

yi1ui4

⎞⎟⎠→
d

⎛⎜⎝ ψyi1ui2

ψyi1ui3

ψyi1ui4

⎞⎟⎠ = ψ.

T=5. We can specify the Sys sample moments and their derivative as

fN(θ) ≈

1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−θ 1 0 0

0 −θ 1 0

0 −θθ0 θ0 0

0 0 −θ 1

0 0 −θθ0 θ0

0 0 −θθ20 θ20
(θ0 − θ)θ0 0 0 0

0 (θ0 − θ)θ20 0 0

0 0 (θ0 − θ)θ30 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

yi1ui2

yi1ui3

yi1ui4

yi1ui5

⎞⎟⎟⎟⎠+ ι4E(limθ0↑1(1− θ0)u
2
i1

⎤⎥⎥⎥⎦+

1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

(ci + ui2)(∆yi4 − θ∆yi3)

0

(ci + ui2)(∆yi5 − θ∆yi4)

(ci(1 + θ0) + θ0ui2 + ui3)(∆yi5 − θ∆yi4)

(1 + (θ0 − θ))ci∆yi2 + (θ0 − θ)ui2∆yi2 + ui3∆yi2

(1 + (θ0 − θ)(1 + θ0))ci∆yi3 + (θ0 − θ)ui3∆yi3 + (θ0 − θ)θ0ui2∆yi3 + ui4∆yi3

(1 + (θ0 − θ)(1 + θ0 + θ20))ci∆yi4 + (θ0 − θ)θ20ui2∆yi4+

+(θ0 − θ)θ0ui3∆yi4 + (θ0 − θ)ui4∆yi4 + ui5∆yi4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

37



qN(θ) ≈ − 1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 θ0 0 0

0 0 1 0

0 0 θ0 0

0 0 θ20 0

θ0 0 0 0

0 θ20 0 0

0 0 θ30 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

yi1ui2

yi1ui3

yi1ui4

yi1ui5

⎞⎟⎟⎟⎠+ ι4E(limθ0↑1(1− θ0)u
2
i1

⎤⎥⎥⎥⎦−

1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

(ci + ui2)∆yi3

0

(ci + ui2)∆yi4

(ci(1 + θ0) + θ0ui2 + ui3)∆yi4

ci∆yi2 + ui2∆ui2

(1 + θ0)ci∆yi3 + ui3∆yi3 + θ0ui3∆yi3

(1 + θ0 + θ20))ci∆yi4 + θ20ui2∆yi4 + θ0ui3∆yi4 + ui4∆yi4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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so

Af(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−θ 1 0 0

0 −θ 1 0

0 −θ 1 0

0 0 −θ 1

0 0 −θ 1

0 0 −θ 1

1− θ 0 0 0

0 1− θ 0 0

0 0 1− θ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Aq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 −1 0 0

0 −1 0 0

0 0 −1 0

0 0 −1 0

0 0 −1 0

−1 0 0 0

0 −1 0 0

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, μ(σ2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

σ22
σ23
σ24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bf(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 −θ 1 0 0 −θ 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −θ 1 0 0 −θ 1 0 0 0 0 0

0 0 −2θ 2 0 0 −θ 1 0 −θ 1 0 0

2− θ 0 0 0 1− θ 1 0 0 0 0 0 0 0

0 3− 2θ 0 0 0 1− θ 0 0 1− θ 1 0 0 0

0 0 4− 3θ 0 0 0 1− θ 0 0 1− θ 0 1− θ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 −1 0 0 0 0 0 0

0 0 −2 0 0 0 −1 0 0 −1 0 0 0

−1 0 0 0 −1 0 0 0 0 0 0 0 0

0 −2 0 0 0 −1 0 0 −1 0 0 0 0

0 0 −3 0 0 0 −1 0 0 −1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N

PN
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ciui2

ciui3

ciui4

ciui5

u2i2
ui2ui3

ui2ui4

ui2ui5

u2i3
ui3ui4

ui3ui4

u2i4
ui4ui5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

σ2
2

0

0

0

σ23
0

0

σ24
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→
d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψciui2

ψciui3

ψciui4

ψciui5

ψui2ui2

ψui2ui3

ψui2ui4

ψui2ui5

ψui3ui3

ψui3ui4

ψui3ui5

ψui4ui4

ψui4ui5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ψcu

h(θ0)√
N

PN
i=1

⎛⎜⎝ yi1ui2

yi1ui3

yi1ui4

⎞⎟⎠→
d

⎛⎜⎝ ψyi1ui2

ψyi1ui3

ψyi1ui4

⎞⎟⎠ = ψ.

Proof of Theorem 5. We show the consistency of the two step estimator and CUE

in two different manners. First, we show the consistency of the two step estimator

using its closed form expression that involves the one step estimator. Second, for the

consistency of the CUE, we use the convergence of the objective function and then

invoke the results from Newey and McFadden (1994). Before we derive either one of

these two results, we analyze the large sample behavior of the covariance estimator

V̂ff(θ) =
1
N

PN
i=1(fi(θ)− f̄)(fi(θ)− f̄)0,

its inverse and some functions of it. To obtain the large sample behavior of the covari-

ance matrix estimator, it is convenient to specify it as

(Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0V̂ff(θ)(Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥),

with Af(θ)⊥ a 1
2
(T + 1)(T − 2) × ¡1

2
(T − 1)(T − 2)− 1¢ dimensional matrix which

is the orthogonal complement of Af(θ), so Af(θ)
0
⊥Af(θ) ≡ 0 and Af(θ)

0
⊥Af(θ)⊥ ≡
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I( 12 (T−1)(T−2)−1)
. For values of θ0 close to one, we decompose V̂ff(θ) as follows:

(Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0V̂ff(θ)(Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥) =Ã
1

h(θ0)2
V̂y1∆y,y1∆y

1
h(θ0)

V̂y1∆y,uuBf(θ)
0Af(θ)⊥

1
h(θ0)

Af(θ)
0
⊥Bf(θ)V̂

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)V̂uu,uuBf(θ)

0Af(θ)⊥

!
→
pÃ

1
h(θ0)2

Vy1∆y,y1∆y
1

h(θ0)
Vy1∆y,uuBf(θ)

0Af(θ)⊥
1

h(θ0)
Af(θ)

0
⊥Bf(θ)V

0
c∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!
.

where

V̂y1∆y,y1∆y =
h(θ0)2

N

PN
i=1

⎡⎢⎣
⎛⎜⎝ y1iui2

...

y1iuiT

⎞⎟⎠−
⎛⎜⎝ y1iui2

...

y1iuiT

⎞⎟⎠
⎤⎥⎦
⎡⎢⎣
⎛⎜⎝ y1iui2

...

y1iuiT

⎞⎟⎠−
⎛⎜⎝ y1iui2

...

y1iuiT

⎞⎟⎠
⎤⎥⎦
0

V̂y1∆y,uu =
h(θ0)
N

PN
i=1

⎡⎢⎣
⎛⎜⎝ y1iui2

...

y1iuiT

⎞⎟⎠−
⎛⎜⎝ y1iui2

...

y1iuiT

⎞⎟⎠
⎤⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ciui2
...

ciuiT
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with ab = 1
N

PN
i=1 aibi. Using the properties of the partioned inverse, we can show that

the inverse of the above covariance matrix estimator behaves like∙
(Af(θ)(Af(θ)

0Af(θ))
−1 ... Af(θ)⊥)0V̂ff(θ)(Af(θ)(Af(θ)

0Af(θ))
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¸−1
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h
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Af(θ)
0
⊥Bf(θ)V̂uu,uu.y1∆yBf(θ)

0Af(θ)⊥
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⎞⎠
→
p

Ã
h(θ0)

2V −1y1∆y,y1∆y.uu

−h(θ0) [Af(θ)
0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥]
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−1
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We also decompose the Sys sample moments:

(Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0fN(θ) =

Ã
i

ii

!
i = 1

h(θ0)
√
N
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2
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0
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(1− θ)μ(σ2) + 1√
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i
which implies that∙
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−1 ... Af(θ)⊥)0fN(θ)→
d
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0
h
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h
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2
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⊥
h
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n
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N
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ii = [Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥]
−1 ©−Af(θ)

0
⊥Bf(θ)V

0
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1√
N
Bf(θ)ψcu

i
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io
.

We use the above results to obtain the large sample distribution of the two step esti-

mator. The two step estimator uses the one step estimator

θ̂1s = −(ψ0A0qAqψ)
−1ψ0AqAf,1ψ = 1− (ψ0A0qAqψ)

−1ψ0AqAf(1)ψ,

since Af,1 = Af(1)−Aq, which is inconsistent as Af(1) does not go to zero and where

we used that the large sample behavior of qN(θ) is governed by 1
h(θ)

Aqψ, see Theorem

4. The large sample expression of the two step estimator then reads

θ̂2s = −( 1
h(θ0)

ψ0A0qV̂ff(θ̂1s)
−1Aq

1
h(θ0)
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−1 1
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Af,1ψ
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1
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1
h(θ0)

,
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0
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−
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i−1
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i
,

which shows that the large sample distribution of the two step estimator for values of

θ0 close to one is characterized by

h(θ0)
−1(θ̂2s − 1)→

d
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0Af(θ̂1s)⊥
i−1

Af(θ̂1s)
0
⊥Aqψ)

−1

ψ0A0qAf(θ̂1s)⊥
h
Af(θ̂1s)

0
⊥Bf(θ̂1s)Vuu,uu.y1∆yBf(θ̂1s)

0Af(θ̂1s)⊥
i−1

Af(θ̂1s)
0
⊥h

(1− θ̂1s)μ(σ
2) + 1√

N
Bf(θ̂1s)

¡
ψcu − V 0
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¢i
,

so the two step estimator is consistent but with a non-standard convergence rate, h(θ0),

and a non-standard large sample distribution.
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To show the consistency of the CUE, we construct the large sample behavior of the

objective function for the CUE, the GMM-AR statistic divided by N :

QCUE(θ) =
1

N
GMM-AR(θ) = fN(θ)

0V̂ff(θ)−1fN(θ).

As stated in Theorem 6, the large sample behavior of GMM-AR statistic for values of

θ0 close to one is characterized by
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d

Ã
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0
⊥
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i ! .

When we divide by N, we obtain the large sample behavior of the CUE objective

function

QCUE(θ)→
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i ! .

Alternatively, this can be considered as the large sample behavior of the GMMobjective

function that results from the sample moment

(h(θ0)Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0fN(θ).

The expected value of this sample moment for large samples equalsÃ
0

Af(θ)
0
⊥(1− θ)μ(σ2)

!
so the quadratic form with respect to the covariance matrix of this rescaled sample

moment, is clearly minimized when θ equals 1. Since the sample objective function

uniformly converges to the population objective function, the CUE is consistent by

Lemma 2.3 in Newey and McFadden (1994).
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To obtain the convergence rate and large sample distribution of the CUE, we first

need the large sample distribution of D̂N(θ) for which we construct the expression

for V̂θf(θ)V̂ff(θ)−1fN(θ), for which we start out with V̂θf(θ)(Af(θ)(Af(θ)
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We post-multiply it with our limit previous expression for∙
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to obtain the limit expression of V̂θf(θ)V̂ff(θ)−1fN(θ) :
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so
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N
Bf(θ)ψcu

i ! .

The CUE results from the first order condition:

D̂N(θ̂CUE)
0V̂ff(θ̂CUE)−1fN(θ̂CUE) = 0.

The derivative of V̂ff(θ)−
1
2fN(θ) is such that

∂
∂θ
V̂ff(θ)

− 1
2fN(θ) = V̂ff(θ)

− 1
2 D̂N(θ),

see Kleibergen and Mavroeidis (2010), which we use to obtain a Taylor expansion of

V̂ff(θ̂CUE)
− 1
2fN(θ̂CUE) around one:

V̂ff(θ̂CUE)
−1
2fN(θ̂CUE) ≈ V̂ff(1)

− 1
2fN(1) + V̂ff(1)

− 1
2 D̂N(1)(θ̂CUE − 1),

which we insert into the first order condition to obtain:

θ̂CUE ≈ 1+
³
D̂N(θ̂CUE)

0V̂ff(θ̂CUE)−
1
2 V̂ff(1)

− 1
2 D̂N(1)

´−1
D̂N(θ̂CUE)

0V̂ff(θ̂CUE)−
1
2 V̂ff(1)

− 1
2fN(1),

because θ̂CUE is consistent, we equate it to the true value of 1 to obtain its large sample

distribution and convergence speed:

θ̂CUE ≈ 1 +
³
D̂N(θ̂CUE)

0V̂ff(θ̂CUE)−
1
2 V̂ff(1)

− 1
2 D̂N(1)

´−1
D̂N(θ̂CUE)

0V̂ff(θ̂CUE)−
1
2 V̂ff(1)

− 1
2fN(1)

≈ 1 +
³
D̂N(1)

0V̂ff(1)−1D̂N(1)
´−1

D̂N(1)
0V̂ff(1)−1V̂ff(1)−

1
2fN(1)

≈ 1 +
£
μ(σ2)0Af(1)⊥ [Af(1)

0
⊥Bf(1)Vuu,uu.y1∆yBf(1)

0Af(1)⊥]
−1Af(1)

0
⊥μ(σ

2)
¤−1

μ(σ2)0Af(1)⊥ [Af(1)
0
⊥Bf(1)Vuu,uu.y1∆yBf(1)

0Af(1)⊥]
−1h

Af(1)
0
⊥

1√
N
Bf(1)ψcu −Af(1)

0
⊥Bf(1)V

0
y1∆y,uuV

−1
y1∆y,y1∆y

1√
N
ψ
i

so√
N(θ̂CUE − 1)→

d

£
μ(σ2)0Af(1)⊥ [Af(1)

0
⊥Bf(1)Vuu,uu.y1∆yBf(1)

0Af(1)⊥]
−1Af(1)

0
⊥μ(σ

2)
¤−1

μ(σ2)0Af(1)⊥ [Af(1)
0
⊥Bf(1)Vuu,uu.y1∆yBf(1)

0Af(1)⊥]
−1

Af(1)
0
⊥Bf(1)

£
ψcu − V 0

y1∆y,uuV
−1
y1∆y,y1∆yψ

¤
,

which shows that the CUE is consistent with a standard convergence rate and a normal

large sample distribution.
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Proof of Theorem 6. GMM-AR statistic. Using the results from the proof of

Theorem 5 on the large sample distribution of the two step estimator, it holds that the

GMM-AR statistic equals

GMM-AR(θ) = NfN(θ)
0V̂ff(θ)−1fN(θ)

= N × i0 × i+N × ii0 × ii.

The two components of the GMM-AR statistic behave according to:

N × i0 × i =
N
h

1
h(θ0)

√
N
ψ + (Af(θ)

0Af(θ))
−1Af(θ)

0
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu +Af(θ)ιT−2E(limθ0↑1(1− θ0)u

2
i1)
iih

h(θ0)V
−1
y1∆y,y1∆y.uu

n
(Af(θ)

0Af(θ))
−1Af(θ)

0
h
1√
N
Af(θ)ψ + h(θ0)

h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu+

Af(θ)ιT−2E(limθ0↑1(1− θ0)u
2
i1)]]− Vy1∆y,uuBf(θ)

0Af(θ)⊥(Af(θ)
0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥)−1Af(θ)
0
⊥h

(1− θ)μ(σ2) + 1√
N
Bf(θ)ψcu

ioi
=
h
ψ + h(θ0)

√
N(Af(θ)

0Af(θ))
−1Af(θ)

0
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu+

Af(θ)ιT−2E(limθ0↑1(1− θ0)u
2
i1)]]

0
V −1y1∆y,y1∆y.uu

h
ψ + h(θ0)

√
N(Af(θ)

0Af(θ))
−1Af(θ)

0h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu +Af(θ)ιT−2E(limθ0↑1(1− θ0)u

2
i1)
i
−h

ψ + h(θ0)
√
N(Af(θ)

0Af(θ))
−1Af(θ)

0
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu +Af(θ)ιT−2E(limθ0↑1(1− θ0)u

2
i1)
ii0

V −1y1∆y,y1∆y.uuVy1∆y,uuBf(θ)
0Af(θ)⊥(Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥)−1Af(θ)
0
⊥
h√

N(1− θ)μ(σ2) +Bf(θ)

where we used that h(θ0)
√
N → 0 when θ0 → 1, and

N × ii0 × ii =
N
h
Af(θ)

0
⊥
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu

ii0
[Af(θ)

0
⊥Bf(θ)Vuu,uu,y1∆yBf(θ)

0Af(θ)⊥]
−1 ©−Af(θ)

0
⊥Bf(θ)V

0
y1∆y,uuV

−1
y1∆y,y1∆y(Af(θ)

0Af(θ))
−1Af(θ)

0h
h(θ0)(1− θ)μ(σ2) + 1√

N
Af(θ)ψ + h(θ0)Af(θ)ιT−2E(limθ0↑1(1− θ0)u

2
i1)+

1√
N
h(θ0)Bf(θ)ψcu

i
+Af(θ)

0
⊥
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu

io
=

h√
N(1− θ)μ(σ2) +Bf(θ)ψcu

i0
Af(θ)⊥ [Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥]
−1

Af(θ)
0
⊥
h√

N(1− θ)μ(σ2) +Bf(θ)ψcu

i
−h√

N(1− θ)μ(σ2) +Bf(θ)ψcu

i0
Af(θ)⊥ [Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥]
−1

Af(θ)
0
⊥Bf(θ)V

0
y1∆y,uuV

−1
y1∆y,y1∆y.uu(Af(θ)

0Af(θ))
−1Af(θ)

0
h√

Nh(θ0)(1− θ)μ(σ2)+

Af(θ)ψ + h(θ0)Bf(θ)ψcu]
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since h(θ0)
√
N → 0 when θ0 → 1. Hence, the behavior of GMM-AR(θ) is characterized

by

GMM-AR(θ)

= NfN(θ)
0Vff(θ)−1fN(θ)

= N × i0 × i+N × ii0 × ii

→
d

⎛⎝ h
ψ + h(θ0)

√
N(Af(θ)

0Af(θ))
−1Af(θ)

0
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu +Af(θ)ιT−2E(limθ0↑1(1− θ0)√

NAf(θ)
0
⊥
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu

i
Ã

Vy1∆y,y1∆y Vy1∆y,uuBf(θ)
0Af(θ)⊥

Af(θ)
0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!−1
⎛⎝ h

ψ + h(θ0)
√
N(Af(θ)

0Af(θ))
−1Af(θ)

0
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu +Af(θ)ιT−2E(limθ0↑1(1− θ0)u

2
i1)√

NAf(θ)
0
⊥
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu

i

=

Ã
ψ

Af(θ)
0
⊥
h√

N(1− θ)μ(σ2) +Bf(θ)ψcu

i !0
Ã

Vy1∆y,y1∆y Vy1∆y,uuBf(θ)
0Af(θ)⊥

Af(θ)
0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!−1
Ã

ψ

Af(θ)
0
⊥
h√

N(1− θ)μ(σ2) +Bf(θ)ψcu

i !
which shows that the GMM-AR statistic has a χ2(1

2
(T + 1)(T − 2)) distribution in

large samples when θ = θ0 = 1 and a non-central χ2 with 1
2
(T + 1)(T − 2) degrees of

freedom and non-centrality parameterÃ
0√

N(1− θ)Af(θ)
0
⊥μ(σ

2)

!0Ã
Vy1∆y,y1∆y Vy1∆y,uuBf(θ)

0Af(θ)⊥
Af(θ)

0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!−1
Ã

0√
N(1− θ)Af(θ)

0
⊥μ(σ

2)

!
= N(1− θ)2μ(σ2)0Af(θ)⊥(Af(θ)

0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−1Af(θ)
0
⊥μ(σ

2)

for values of θ unequal to one. The non-centrality parameter shows that the power of

the test increases when θ decreases and N increases as confirmed by our simulation

experiments.

KLM statistic. To obtain the expression of the KLM statistic, we use the expression
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for D̂N(θ) from the proof of Theorem 5 on the large sample distribution of the CUE:

D̂N(θ) = −

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

σ2u2
σ2u3

⎞⎟⎟⎟⎟⎟⎟⎠−
1

h(θ0)
√
N
Aqψ − 1√

N
Bqψcu − V̂θf(θ)V̂ff(θ)

−1fN(θ)

→
d
−[I5 − (1− θ)Aq(Af(θ)

0Af(θ))
−1Af(θ)

0]μ(σ2)+

[AqVy1∆y,uuBf(θ)
0Af(θ)(Af(θ)

0Af(θ))
−1 +BqV

0
y1∆y,uu

... BqVuu,uuBf(θ)
0Af(θ)⊥]Ã

Vy1∆y,y1∆y Vy1∆y,uuBf(θ)
0Af(θ)⊥

Af(θ)
0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!−1
Ã

1√
N
ψ

Af(θ)
0
⊥
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu

i ! .

so

(h(θ0)Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0D̂N(θ) =

→
d
−Af(θ)

0
⊥[I5 − (1− θ)Aq(Af(θ)

0Af(θ))
−1Af(θ)

0]μ(σ2)+

Af(θ)
0
⊥[AqVy1∆y,uuBf(θ)

0Af(θ)(Af(θ)
0Af(θ))

−1 +BqV
0
y1∆y,uu

... BqVuu,uuBf(θ)
0Af(θ)⊥]Ã

Vy1∆y,y1∆y Vy1∆y,uuBf(θ)
0Af(θ)⊥

Af(θ)
0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!−1
Ã

1√
N
ψ

Af(θ)
0
⊥
h
(1− θ)μ(σ2) + 1√

N
Bf(θ)ψcu

i !

The important element of D̂N(θ) is that it does not have a 1
h(θ0)

√
N
ψ component and

that its random components are uncorrelated with those of fN(θ). The large sample

distribution of the KLM statistic is therefore a non-central χ2(1) with non-centrality

parameter:

N(1− θ)2μ(σ2)0(0
... Af(θ)⊥)

Ã
Vy1∆y,y1∆y Vy1∆y,uuBf(θ)

0Af(θ)⊥
Af(θ)

0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!− 1
2
0

Pg(θ)

Ã
Vy1∆y,y1∆y Vy1∆y,uuBf(θ)

0Af(θ)⊥
Af(θ)

0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!−1
2

(0
... Af(θ)⊥)0μ(σ2)
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where

g(θ) =

Ã
Vy1∆y,y1∆y Vy1∆y,uuBf(θ)

0Af(θ)⊥
Af(θ)

0
⊥Bf(θ)V

0
y1∆y,uu Af(θ)

0
⊥Bf(θ)Vuu,uuBf(θ)

0Af(θ)⊥

!− 1
2

(h(θ0)Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0

{−[I5 − (1− θ)Aq(Af(θ)
0Af(θ))

−1Af(θ)
0]μ(σ2)+

[AqVy1∆y,uuBf(θ)
0Af(θ)(Af(θ)

0Af(θ))
−1 +BqV

0
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... BqVuu,uuBf(θ)
0Af(θ)⊥]Ã
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0
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0Af(θ)⊥

!−1
Ã

0

(1− θ)Af(θ)
0
⊥μ(σ

2)

!)
.

GMM-LM statistic: To determine the large sample behavior of the GMM-LM statis-
tic for values of θ close to one, we first determine the behavior of (h(θ0)Af(θ)(Af(θ)

0Af(θ))
−1

... Af(θ)⊥)0qN(θ) :

(h(θ0)Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0qN(θ)

= (h(θ0)Af(θ)(Af(θ)
0Af(θ))

−1 ... Af(θ)⊥)0h
μ(σ2) +Aq

³
1

h(θ0)
√
N
ψ + ιT−2E(limθ0↑1(1− θ0)u

2
i1)
´
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=

Ã
(Af(θ)

0Af(θ))
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Aqψ
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⊥
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1
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2
i1)
´
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Bqψcu

i ! .
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so the behavior of fN(θ)0V̂ff(θ)−1qN(θ) is characterized by

fN(θ)
0V̂ff(θ)−1qN(θ)

=

Ã
1√
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ψ

Af(θ)
0
⊥
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0Af(θ)⊥
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!−1
Ã

0
1
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0
⊥Aqψ

!
= 1

h(θ0)

h
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N
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¡
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¢i0
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(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−1Af(θ)
0
⊥Aqψ.

While qN(θ)0V̂ff(θ)−1qN(θ) is characterized by

qN(θ)
0V̂ff(θ)−1qN(θ)

=

Ã
(Af(θ)

0Af(θ))
−1Af(θ)

0 1√
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Aqψ
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ψ0A0q(Af(θ)

0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−1Aqψ

Combining these results, we obtain the large sample distribution of the GMM-LM

statistic:

GMM-LM(θ) = NfN(θ)
0V̂ff(θ)−1qN(θ)(qN(θ)0V̂ff(θ)−1qN(θ))−1qN(θ)0V̂ff(θ)−1fN(θ)

=
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√
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¢i
52



with

h(θ) = (Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2Af(θ)

0
⊥Aqψ

which is a non-central χ2(1) since ψcu − V 0
y1∆y,uuV

−1
y1∆y,y1∆yψ is independent of ψ with

(an independently distributed random) non-centrality parameter

N(1− θ)2μ(σ2)0Af(θ)⊥(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2Ph(θ)

(Af(θ)
0
⊥Bf(θ)Vuu,uu.y1∆yBf(θ)

0Af(θ)⊥)−
1
2Af(θ)

0
⊥μ(σ

2).

Proof of Theorem 7. To obtain the power envelopes, we need the different ele-

ments of the covariance matrix Vuu,uu.y1∆y = Vuu,uu − V 0
y1∆y,uuV

−1
y1∆y,y1∆yVy1∆y,uu, which

is involved in the non-centrality parameter of the non-central χ2 distributions of the

GMM-AR, GMM-LM and KLM statistics in Theorem 7 under DGP 1 when θ0 goes to

one:

Vuu,uu =

Ã
σ2cdiag(σ

2
2, σ

2
3, σ

2
4) 0
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2, σ22σ
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2
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!
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(1−θ0)2diag(σ

2
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2
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2
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2
2, σ

2
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2
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V −1y1∆y,y1∆y = (limθ0↑1(1− θ0)
2)diag(σ−22 , σ−23 , σ−24 )− (limθ0↑1(1− θ0)

4)diag(σ−22 , σ−23 , σ−24 )£
(limθ0↑1(1− θ0)

2)diag(σ−22 , σ−23 , σ−24 ) + σ21diag(σ
−2
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¤−1
diag(σ−22 , σ−23 , σ−24 )

Vy1∆y,uu =

Ã
limθ0↑1

σ2c
1−θ0diag(σ

2
2, σ

2
3, σ

2
4)

0

!
.

Combining these we obtain the limit of the covariance matrix involved in the non-

central χ2 distributions when θ0 is equal to one.

limθ0↑1 Vuu,uu.y1∆y =

Ã
0 0

0 diag(E(u2i2 − σ22)
2, σ22σ

2
3, σ

2
2σ
2
4, E(u

2
i3 − σ23)

2, σ23σ
2
4))

!
.
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Appendix B. Definitions
In GMM, we consider a k-dimensional vector of moment conditions, see Hansen (1982):

E[fi(θ0)] = 0, i = 1, . . . , N, (46)

which are a function of observed data and the unknown parameter θ. The moment

conditions are only satisfied at the true value of the p-dimensional vector θ, θ0, and

k is at least as large as p. The population moments in (46) are estimated using the

average sample moments,

fN(θ) =
1
N

PN
i=1 fi(θ). (47)

The k × p dimensional matrix qN(θ) contains the derivative of fN(θ) with respect to

θ :

qN(θ) =
∂
∂θ0fN(θ) =

1
N

PN
i=1 qi(θ), (48)

with qi(θ) =
∂
∂θ0 qi(θ).

For the Dif moment conditions in (5), k equals 1
2
(T−2)(T−1) and the specifications

of fi(θ) and qi(θ) read

fi(θ) = Xiϕi(θ) i = 1, . . . , N,

qi(θ) = −Xi∆y−1,i i = 1, . . . , N,
(49)

with ϕi(θ) = (∆yi3 − θ∆yi2 . . .∆yiT − θ∆yiT−1)0, ∆y−1,i = (∆yi2 . . .∆yiT−1)0 and

Xi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yi1 0 . . . 0 0

0
. . . 0

0 0 . . . 0

⎛⎜⎝ yi1
...

yiT−2

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
: 1
2
(T − 1)(T − 2)× (T − 2), (50)

while for the Lev moment conditions in (6), k equals T −2 while the moment functions
can be specified as

fi(θ) = Wiηi(θ) i = 1, . . . , N,

qi(θ) = Wiy−1,i i = 1, . . . , N,
(51)

with ηi(θ) = (yi3 − θyi2 . . . yiT − θyiT−1)0, y−1,i = (yi2 . . . yiT−1)0, and

Wi =

⎛⎜⎝ ∆yi2 0 . . . 0 0

0
. . . 0

0 0 . . . 0 ∆yiT−1

⎞⎟⎠ : (T − 2)× (T − 2). (52)
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The specification of the moment functions for the Sys moment conditions results by

stacking the moment conditions in (49) and (51) so k equals 1
2
(T + 1)(T − 2). While

we could extend the Lev moment conditions with additional interactions of ∆yit−j and
yit − θyit−1, for j = 2, . . . , t − 2, like the extension of the moment conditions used
by Anderson and Hsiao (1981) towards those used by Arellano and Bond (1991), we

cannot incorporate these into the Sys moment conditions since some of the Sys moment

functions then result as a linear combination of the others.3 We therefore do not extend

the Lev moment functions with these interactions.

We use five different GMM statistics: the two step and CUE Wald statistics,

the GMM-LM statistic of Newey and West (1987), the KLM statistic of Kleibergen

(2002,2005) and the GMM extension of the Anderson-Rubin statistic, see Anderson

and Rubin (1949) and Stock and Wright (2000). The two step estimator and the CUE

result by minimizing the objective function:

Q(θ, θ1) = NfN(θ)
0V̂ff(θ1)−1fN(θ), (53)

with V̂ff(θ
1) the Eicker-White covariance matrix estimator:

V̂ff(θ
1) = 1

N

PN
i=1(fi(θ

1)− fN(θ
1))(fi(θ

1)− fN(θ
1))0. (54)

The CUE of Hansen et. al. (1996), θ̂CUE, results by replacing θ1 by θ in (53) while

the two step estimator, θ̂2s, uses a value of θ
1 equal to the minimizer of (53) when we

replace V̂ff(θ1)−1 by the identity matrix.4 The expressions of the different statistics to
test H0 : θ = θ0 that we use read:

1. Two step Wald statistic:

W2s(θ0) = N(θ̂2s − θ0)
0qN(θ̂2s)0V̂ff(θ̂2s)−1qN(θ̂2s)(θ̂2s − θ0). (55)

2. CUE Wald statistic:

WCUE(θ0) = N(θ̂CUE − θ0)
0D̂N(θ̂CUE)

0V̂ff(θ̂CUE)−1D̂N(θ̂CUE)(θ̂CUE − θ0),

(56)

3To show this consider that T = 4. Two of the (three) Dif sample moments are then
1
N

PN
i=1 yi1(∆yi4−θ∆yi3) and 1

N

PN
i=1 yi2(∆yi4−θ∆yi3) while two of the (three) Lev sample moments

are 1
N

PN
i=1∆yi2(yi3−θyi2) and 1

N

PN
i=1∆y2i(yi4−θyi3). If we substract the first of these Dif sample

moments from the second and add the first of the Lev sample moments to it, the second Lev sample
moment results.

4For the two step Wald statistic with the Dif moment conditions, we use a value of θ1 that results
from minimizing (53) using the covariance matrix estimator that results under homoscedasticity.
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with D̂N(θ) a k × p dimensional matrix,

vec(D̂N(θ)) = vec(qN(θ))− V̂θf(θ)V̂ff(θ)
−1fN(θ) (57)

and

V̂θf(θ) =
1
N

PN
i=1 vec[qi(θ)− qN(θ)](fi(θ)− fN(θ))

0. (58)

3. The GMM-LM statistic of Newey and West (1987):

LM(θ0) = NfN(θ0)
0V̂ff(θ0)−1qN(θ0)

h
qN(θ0)

0V̂ff(θ0)−1qN(θ0)
i−1

qN(θ0)
0V̂ff(θ0)−1fN(θ0).

(59)

4. The KLM statistic of Kleibergen (2005):

KLM(θ0) = NfN(θ0)
0V̂ff(θ0)−1D̂N(θ0)

h
D̂N(θ0)

0V̂ff(θ0)−1D̂N(θ0)
i−1

D̂N(θ0)
0V̂ff(θ0)−1fN(θ0).

(60)

5. The GMM extension of the Anderson-Rubin statistic, see Anderson and Rubin

(1949) and Stock and Wright (2000):

GMM-AR(θ) = NfN(θ)
0V̂ff(θ)−1fN(θ) = Q(θ, θ). (61)

All of the above statistics are general GMM statistics. The GMM-AR statistic is

the only statistic whose large sample distributions is not χ2(p) under H0. The large

sample distribution of the GMM-AR statistic is a χ2(k) distribution under H0. The

last two of the above statistics are so-called weak instrument robust statistics so their

(conditional) large sample distributions remain free from nuisance parameters when

the Jacobian identification condition fails. We can therefore use them to analyze the

influence of the fixed effects and initial observations on the identification of θ in a clear

manner since the results are not distorted by the change of the large sample distribution

of the statistic caused by the identification failure.
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